首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.  相似文献   

2.
Mast cells upon stimulation through high affinity IgE receptors massively release inflammatory mediators by the fusion of specialized secretory granules (related to lysosomes) with the plasma membrane. Using the RBL-2H3 rat mast cell line, we investigated whether granule secretion involves components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery. Several isoforms of each family of SNARE proteins were expressed. Among those, synaptosome-associated protein of 23 kDa (SNAP23) was central in SNARE complex formation. Within the syntaxin family, syntaxin 4 interacted with SNAP23 and all vesicle-associated membrane proteins (VAMPs) examined, except tetanus neurotoxin insensitive VAMP (TI-VAMP). Overexpression of syntaxin 4, but not of syntaxin 2 nor syntaxin 3, caused inhibition of FcepsilonRI-dependent exocytosis. Four VAMP proteins, i.e., VAMP2, cellubrevin, TI-VAMP, and VAMP8, were present on intracellular membrane structures, with VAMP8 residing mainly on mediator-containing secretory granules. We suggest that syntaxin 4, SNAP23, and VAMP8 may be involved in regulation of mast cell exocytosis. Furthermore, these results are the first demonstration that the nonneuronal VAMP8 isoform, originally localized on early endosomes, is present in a regulated secretory compartment.  相似文献   

3.
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP25) and the vesicle SNARE protein vesicle-associated membrane protein (VAMP) are essential for a late Ca(2+)-dependent step in regulated exocytosis, but their precise roles and regulation by Ca(2+) are poorly understood. Botulinum neurotoxin (BoNT) E, a protease that cleaves SNAP25 at Arg(180)-Ile(181), completely inhibits this late step in PC12 cell membranes, whereas BoNT A, which cleaves SNAP25 at Gln(197)-Arg(198), is only partially inhibitory. The difference in toxin effectiveness was found to result from a reversal of BoNT A but not BoNT E inhibition by elevated Ca(2+) concentrations. BoNT A treatment essentially increased the Ca(2+) concentration required to activate exocytosis, which suggested a role for the C terminus of SNAP25 in the Ca(2+) regulation of exocytosis. Synaptotagmin, a proposed Ca(2+) sensor for exocytosis, was found to bind SNAP25 in a Ca(2+)-stimulated manner. Ca(2+)-dependent binding was abolished by BoNT E treatment, whereas BoNT A treatment increased the Ca(2+) concentration required for binding. The C terminus of SNAP25 was also essential for Ca(2+)-dependent synaptotagmin binding to SNAP25. syntaxin and SNAP25.syntaxin.VAMP SNARE complexes. These results clarify classical observations on the Ca(2+) reversal of BoNT A inhibition of neurosecretion, and they suggest that an essential role for the C terminus of SNAP25 in regulated exocytosis is to mediate Ca(2+)-dependent interactions between synaptotagmin and SNARE protein complexes.  相似文献   

4.
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca(2+)-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca(2+)-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

5.
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (−/−) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8−/− acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2–3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8−/− acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8−/− acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14–16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.  相似文献   

6.
A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells   总被引:10,自引:0,他引:10  
Despite our general understanding that members of the SNARE superfamily participate in diverse intracellular docking/fusion events, the physiological role of the majority of SNAREs in the intact organism remains elusive. In this study, through targeted gene knockout in mice, we establish that VAMP8/endobrevin is a major player in regulated exocytosis of the exocrine pancreas. VAMP8 is enriched on the membrane of zymogen granules and exists in a complex with syntaxin 4 and SNAP-23. VAMP8-/- mice developed normally but showed severe defects in the pancreas. VAMP8 null acinar cells contained three times more zymogen granules than control acinar cells. Furthermore, secretagogue-stimulated secretion was abolished in pancreatic fragments derived from VAMP8-/- mice. In addition, VAMP8-/- mice were partially resistant to supramaximal caerulein-induced pancreatitis. These results suggest a major physiological role of VAMP8 in regulated exocytosis of pancreatic acinar cells by serving as a v-SNARE of zymogen granules.  相似文献   

7.
Padfield PJ 《FEBS letters》2000,484(2):129-132
The neurotoxin sensitivity of regulated exocytosis in the pancreatic acinar cell was investigated using streptolysin-O permeabilized pancreatic acini. Treatment of permeabilized acini with botulinum toxin B (BoNT/B) or botulinum toxin D (BoNT/D) had no detectable effect on Ca(2+)-dependent amylase secretion but did result in the complete cleavage of VAMP 2. In comparison, tetanus toxin (TeTx) treatment both significantly inhibited Ca(2+)-dependent amylase secretion and cleaved VAMP 2. These results indicate that regulated exocytosis in the pancreatic acinar cell requires a tetanus toxin sensitive protein(s) other than VAMP 2.  相似文献   

8.
Vesicle-associated membrane protein-2 (VAMP-2) and cellubrevin are associated with the membrane of insulin-containing secretory granules and of gamma-aminobutyric acid (GABA)-containing synaptic-like vesicles of pancreatic beta-cells. We found that a point mutation in VAMP-2 preventing targeting to synaptic vesicles also impairs the localization on insulin-containing secretory granules, suggesting a similar requirement for vesicular targeting. Tetanus toxin (TeTx) treatment of permeabilized HIT-T15 cells leads to the proteolytic cleavage of VAMP-2 and cellubrevin and causes the inhibition of Ca2+-triggered insulin exocytosis. Transient transfection of HIT-T15 cells with VAMP-1, VAMP-2 or cellubrevin made resistant to the proteolytic action of TeTx by amino acid replacements in the cleavage site restored Ca2+-stimulated secretion. Wild-type VAMP-2, wild-type cellubrevin or a mutant of VAMP-2 resistant to TeTx but not targeted to secretory granules were unable to rescue Ca2+-evoked insulin release. The transmembrane domain and the N-terminal region of VAMP-2 were not essential for the recovery of stimulated exocytosis, but deletions preventing the binding to SNAP-25 and/or to syntaxin I rendered the protein inactive in the reconstitution assay. Mutations of putative phosphorylation sites or of negatively charged amino acids in the SNARE motif recognized by clostridial toxins had no effect on the ability of VAMP-2 to mediate Ca2+-triggered secretion. We conclude that: (i) both VAMP-2 and cellubrevin can participate in the exocytosis of insulin; (ii) the interaction of VAMP-2 with syntaxin and SNAP-25 is required for docking and/or fusion of secretory granules with the plasma membrane; and (iii) the phosphorylation of VAMP-2 is not essential for Ca2+-stimulated insulin exocytosis.  相似文献   

9.
Ca2+-regulated exocytosis of lysosomes has been recognized recently as a ubiquitous process, important for the repair of plasma membrane wounds. Lysosomal exocytosis is regulated by synaptotagmin VII, a member of the synaptotagmin family of Ca2+-binding proteins localized on lysosomes. Here we show that Ca2+-dependent interaction of the synaptotagmin VII C(2)A domain with SNAP-23 is facilitated by syntaxin 4. Specific interactions also occurred in cell lysates between the plasma membrane t-SNAREs SNAP-23 and syntaxin 4 and the lysosomal v-SNARE TI-VAMP/VAMP7. Following cytosolic Ca2+ elevation, SDS-resistant complexes containing SNAP-23, syntaxin 4, and TI-VAMP/VAMP7 were detected on membrane fractions. Lysosomal exocytosis was inhibited by the SNARE domains of syntaxin 4 and TI-VAMP/VAMP7 and by cleavage of SNAP-23 with botulinum neurotoxin E, thereby functionally implicating these SNAREs in Ca2+-regulated exocytosis of conventional lysosomes.  相似文献   

10.
We have examined the role of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) synaptobrevin-2/vesicle-associated membrane protein (VAMP)-2 in neutrophil exocytosis. VAMP-2, localized in the membranes of specific and gelatinase-containing tertiary granules in resting human neutrophils, resulted translocated to the cell surface following neutrophil activation under experimental conditions that induced exocytosis of specific and tertiary granules. VAMP-2 was also found on the external membrane region of granules docking to the plasma membrane in activated neutrophils. Specific Abs against VAMP-2 inhibited Ca(2+) and GTP-gamma-S-induced exocytosis of CD66b-enriched specific and tertiary granules, but did not affect exocytosis of CD63-enriched azurophilic granules, in electropermeabilized neutrophils. Tetanus toxin disrupted VAMP-2 and inhibited exocytosis of tertiary and specific granules. Activation of neutrophils led to the interaction of VAMP-2 with the plasma membrane Q-SNARE syntaxin 4, and anti-syntaxin 4 Abs inhibited exocytosis of specific and tertiary granules in electropermeabilized neutrophils. Immunoelectron microscopy showed syntaxin 4 on the plasma membrane contacting with docked granules in activated neutrophils. These data indicate that VAMP-2 mediates exocytosis of specific and tertiary granules, and that Q-SNARE/R-SNARE complexes containing VAMP-2 and syntaxin 4 are involved in neutrophil exocytosis.  相似文献   

11.
The molecular mechanism governing the regulated secretion of most exocrine tissues remains elusive, although VAMP8/endobrevin has recently been shown to be the major vesicular SNARE (v-SNARE) of zymogen granules of pancreatic exocrine acinar cells. In this article, we have characterized the role of VAMP8 in the entire exocrine system. Immunohistochemical studies showed that VAMP8 is expressed in all examined exocrine tissues such as salivary glands, lacrimal (tear) glands, sweat glands, sebaceous glands, mammary glands, and the prostate. Severe anomalies were observed in the salivary and lacrimal glands of VAMP8-null mice. Mutant salivary glands accumulated amylase and carbonic anhydrase VI. Electron microscopy revealed an accumulation of secretory granules in the acinar cells of mutant parotid and lacrimal glands. Pilocarpine-stimulated secretion of saliva proteins was compromised in the absence of VAMP8. Protein aggregates were observed in mutant lacrimal glands. VAMP8 may interact with syntaxin 4 and SNAP-23. These results suggest that VAMP8 may act as a v-SNARE for regulated secretion of the entire exocrine system.  相似文献   

12.
CRHSP-28 is a Ca(2+)-regulated heat-stable phosphoprotein, abundant in the apical cytoplasm of epithelial cells that are specialized in exocrine protein secretion. To define a functional role for the protein in pancreatic secretion, recombinant CRHSP-28 (rCRHSP-28) was introduced into streptolysin-O-permeabilized acinar cells, and amylase secretion in response to elevated Ca(2+) was determined. Secretion was enhanced markedly by rCRHSP-28 over a time course that closely corresponded with the loss of the native protein from the intracellular compartment. No effects of rCRHSP-28 were detected until approximately 50% of the native protein was lost from the cytosol. Secretion was enhanced by rCRHSP-28 over a physiological range of Ca(2+) concentrations with 2-3-fold increases in amylase release occurring in response to low micromolar levels of free Ca(2+). Further, rCRHSP-28 augmented secretion in a concentration-dependent manner with minimal and maximal effects occurring at 1 and 25 microg/ml, respectively. Covalent cross-linking experiments demonstrated that native CRHSP-28 was present in a 60-kDa complex in cytosolic fractions and in a high molecular mass complex in particulate fractions, consistent with the slow leak rate of the protein from streptolysin-O-permeabilized cells. Probing acinar lysates with rCRHSP-28 in a gel-overlay assay identified two CRHSP-28-binding proteins of 35 (pp35) and 70 kDa (pp70). Interestingly, preparation of lysates in the presence of 1 mm Ca(2+) resulted in a marked redistribution of both proteins from a cytosolic to a Triton X-100-insoluble fraction, suggesting a Ca(2+)-sensitive interaction of these proteins with the acinar cell cytoskeleton. In agreement with our previous study immunohistochemically localizing CRHSP-28 around secretory granules in acinar cells, gel-overlay analysis revealed pp70 copurified with acinar cell secretory granule membranes. These findings demonstrate an important cell physiological function for CRHSP-28 in the Ca(2+)-regulated secretory pathway of acinar cells.  相似文献   

13.
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.  相似文献   

14.
Secretagogue-induced changes in intracellular Ca(2+) play a pivotal role in secretion in pancreatic acini yet the molecules that respond to Ca(2+) are uncertain. Zymogen granule (ZG) exocytosis is regulated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. In nerve and endocrine cells, Ca(2+)-stimulated exocytosis is regulated by the SNARE-associated family of proteins termed synaptotagmins. This study examined a potential role for synaptotagmins in acinar secretion. RT-PCR revealed that synaptotagmin isoforms 1, 3, 6, and 7 are present in isolated acini. Immunoblotting and immunofluorescence using three different antibodies demonstrated synaptotagmin 1 immunoreactivity in apical cytoplasm and ZG fractions of acini, where it colocalized with vesicle-associated membrane protein 2. Synaptotagmin 3 immunoreactivity was detected in membrane fractions and colocalized with an endolysosomal marker. A potential functional role for synaptotagmin 1 in secretion was indicated by results that introduction of synaptotagmin 1 C2AB domain into permeabilized acini inhibited Ca(2+)-dependent exocytosis by 35%. In contrast, constructs of synaptotagmin 3 had no effect. Confirmation of these findings was achieved by incubating intact acini with an antibody specific to the intraluminal domain of synaptotagmin 1, which is externalized following exocytosis. Externalized synaptotagmin 1 was detected exclusively along the apical membrane. Treatment with CCK-8 (100 pM, 5 min) enhanced immunoreactivity by fourfold, demonstrating that synaptotagmin is inserted into the apical membrane during ZG fusion. Collectively, these data indicate that acini express synaptotagmin 1 and support that it plays a functional role in secretion whereas synaptotagmin 3 has an alternative role in endolysosomal membrane trafficking.  相似文献   

15.
The spatiotemporal changes in intracellular free Ca(2+) concentration ([Ca(2+)](i)) as well as fluid secretion and exocytosis induced by acetylcholine (ACh) in intact acini of guinea pig nasal glands were investigated by two-photon excitation imaging. Cross-sectional images of acini loaded with the fluorescent Ca(2+) indicator fura-2 revealed that the ACh-evoked increase in [Ca(2+)](i) was immediate and spread from the apical region (the secretory pole) of acinar cells to the basal region. Immersion of acini in a solution containing a fluorescent polar tracer, sulforhodamine B (SRB), revealed that fluid secretion, detected as a rapid disappearance of SRB fluorescence from the extracellular space, occurred exclusively in the luminal region and was accompanied by a reduction in acinar cell volume. Individual exocytic events were also visualized with SRB as the formation of Omega-shaped profiles at the apical membrane. In contrast to the rapidity of fluid secretion, exocytosis of secretory granules occurred with a delay of approximately 70s relative to the increase in [Ca(2+)](i). Exocytic events also occurred deep within the cytoplasm in a sequential manner with the latency of secondary exocytosis being greatly reduced compared with that of primary exocytosis. The delay in sequential compound exocytosis relative to fluid secretion may be important for release of the viscous contents of secretory granules into the nasal cavity.  相似文献   

16.
Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly.  相似文献   

17.
SNARE and rab protein family members were originally identified in terminally differentiated cell types. These proteins are phylogenetically conserved and while compelling evidence demonstrates their involvement in the secretory pathway, their exact function is debated. We recently identified SNARE protein family members in the sea urchin egg and provided evidence that rab3 functions in the exocytosis of cortical granules. Here we tested the hypothesis that these same proteins might also be present throughout embryogenesis to mediate membrane fusion events. We provide evidence that the sea urchin possesses a low complexity of gene family members of syntaxin, VAMP, and rab3 and that these proteins are not only present during development, but are enriched in regions of the embryo with active secretory roles. We found accumulation of each family member in the apical and basal aspects of cleaving blastomeres, indicative of bidirectional secretion into the extraembryonic environment and blastocoel. Elevated levels of syntaxin, VAMP, and rab3 were also found in the mesodermally derived pigment cells that invade and move within the ectoderm. These cells likely rely on SNARE and rab proteins to enable mobility by mediating the secretion of enzymes that break adhesion to neighboring cells and the extracellular matrix. In addition, these secretory proteins are enriched in the gut following gastrulation. Thus, we conclude that VAMP, syntaxin, and rab3 mediate a variety of secretory events that is important for development.  相似文献   

18.
19.
The secretion of neurotransmitters is a rapid Ca(2+)-regulated process that brings about vesicle fusion with the plasma membrane. This rapid process (< 100 microseconds) involves multiple proteins located at the plasma and vesicular membranes. Because of their homology to proteins participating in constitutive secretion and protein trafficking, they have been characterized extensively. The sequential events that lead these proteins to vesicle docking and fusion are still unclear. We will review recent studies that demonstrate the operative role played by voltage-sensitive Ca(2+) channels and discuss the relevance for the process of evoked transmitter release. The regulation of Ca(2+) influx by syntaxin, synaptosome-associated protein of 25 kDa (SNAP-25) and synaptotagmin, and the reciprocity of these proteins in controlling the kinetic properties of the channel will be discussed. Calcium channel and synaptic proteins expressed in Xenopus oocytes demonstrate a strong functional interaction, which could be pertinent to the mechanism of secretion. First, the voltage-sensitive Ca(2+) channels are negatively modulated by syntaxin: this inhibition is reversed by synaptotagmin. Second, the modulation of N-type Ca(2+) channel activation kinetics strongly suggests that the vesicle could be docked at the plasma membrane through direct interaction with synaptotagmin. Finally, these interactions provide evidence for the assembly of the voltage-sensitive Ca(2+) channel with syntaxin 1A, SNAP-25 and synaptotagmin into an excitosome complex: a putative fusion complex with a potential role in the final stages of secretion. Studies suggest that cross-talk between the synaptic proteins and the channel in a tightly organized complex may enable a rapid secretory response to an incoming signal such as membrane depolarization.  相似文献   

20.
Regulated secretion from pancreatic acinar cells occurs by exocytosis of zymogen granules (ZG) at the apical plasmalemma. ZGs originate from the TGN and undergo prolonged maturation and condensation. After exocytosis, the zymogen granule membrane (ZGM) is retrieved from the plasma membrane and ultimately reaches the TGN. In this study, we analyzed the fate of a low M(r) GTP-binding protein during induced exocytosis and membrane retrieval using immunoblots as well as light and electron microscopic immunocytochemistry. This 27-kD protein, identified by a monoclonal antibody that recognizes rab3A and B, may be a novel rab3 isoform. In resting acinar cells, the rab3-like protein was detected primarily on the cytoplasmic face of ZGs, with little labeling of the Golgi complex and no significant labeling of the apical plasmalemma or any other intracellular membranes. Stimulation of pancreatic lobules in vitro by carbamylcholine for 15 min, resulted in massive exocytosis that led to a near doubling of the area of the apical plasma membrane. However, no relocation of the rab3-like protein to the apical plasmalemma was seen. After 3 h of induced exocytosis, during which time approximately 90% of the ZGs is released, the rab3- like protein appeared to translocate to small vesicles and newly forming secretory granules in the TGN. No significant increase of the rab3-like protein was found in the cytosolic fraction at any time during stimulation. Since the protein is not detected on the apical plasmalemma after stimulation, we conclude that recycling may involve a membrane dissociation-association cycle that accompanies regulated exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号