首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcoulometric analysis of trimethylamine dehydrogenase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Trimethylamine dehydrogenase, which contains one covalently bound 6-S-cysteinyl-FMN and one Fe4S4 cluster per subunit of molecular mass 83,000 Da, was purified to homogeneity from the methylotrophic bacterium W3A1. Microcoulometry at pH 7 in 50 mM-Mops buffer containing 0.1 mM-EDTA and 0.1 M-KCl revealed that the native enzyme required the addition of 3 reducing equivalents per subunit for complete reduction. In contrast, under identical conditions the phenylhydrazine-inhibited enzyme required the addition of 0.9 reducing equivalent per subunit with a midpoint potential of +110 mV. Least-squares analysis of the microcoulometric data obtained for the native enzyme, assuming uptake of 1 electron by Fe4S4 and 2 electrons by FMN, indicated midpoint potentials of +44 mV and +36 mV for the FMN/FMN.- and FMN.-/FMNH2 couples respectively and +102 mV for reduction of the Fe4S4 cluster.  相似文献   

2.
A metmyoglobin (Fe3+), an oxidized form of myoglobin (Fe2+), was confined in nanospaces of about 4 nm in diameter in mesoporous silica (FSM; folded-sheet mesoporous material), forming a metmyoglobin (Fe3+)-FSM nanoconjugate. The spectral characteristics of metmyoglobin (Fe3+)- and myoglobin (Fe2+)-FSM show an absorption curve quite similar to that of native metmyoglobin, indicating that myoglobin retains its higher-order structure in the pores of FSM. The metmyoglobin (Fe3+)-FSM conjugate had not only a peroxidase-like activity in the presence of hydrogen peroxide (a hydrogen acceptor) and 2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfomic acid (ABTS) or guaiacol (a hydrogen donor) but also an advanced molecular recognition ability enabling it to distinguish between ABTS and guaiacol. Furthermore, the metmyoglobin (Fe3+)-FSM showed the peroxidase-like activity even in an organic media using benzoyl peroxide as the hydrogen acceptor and leucocrystal violet as the hydrogen donor. The simple immobilization of metmyoglobin (Fe3+) into FSM results in enhanced catalytic activity in organic media compared to that of native metmyoglobin (Fe3+).  相似文献   

3.
Multiple electrophoretic bands, with RF identical to the natural molecular variants, are produced by treatment of purified Cu, Zn Superoxide dismutase with either H2O2 or ascorbate plus Fe(III) EDTA. The ascorbate reaction is also due to H2O2 since it is inhibited by catalase. However while H2O2 inactivates the enzyme, the electromorphs produced by ascorbate-Fe(III) EDTA have only slightly less activity than the native enzyme and this property parallels the natural situation. It is concluded that oxidative aging can be responsible for the multiple molecular variants of the natural enzyme, under conditions where the oxidant attack is preferentially directed to amino acid side chains outside the active site. Such conditions may occur when a metal ion coordinated to the protein surface undergoes a redox cycle with biological reductants, like ascorbate.  相似文献   

4.
R C Blake  K J White  E A Shute 《Biochemistry》1991,30(39):9443-9449
Rusticyanin is a soluble blue copper protein found in abundance in the periplasmic space of Thiobacillus ferrooxidans, an acidophilic bacterium capable of growing chemolithotrophically on soluble ferrous sulfate. The one-electron-transfer reactions between soluble iron and purified rusticyanin were studied by stopped-flow spectrophotometry in acidic solutions containing each of 14 different anions. The second-order rate constants for both the Fe(II)-dependent reduction and the Fe(III)-dependent oxidation of the rusticyanin varied as a function of the identity of the principal anion in solution. Analogous electron-transfer reactions between soluble iron and bis(dipicolinato)cobaltate(III) or bis(dipicolinato)ferrate(II) were studied by stopped-flow spectrophotometry under solution conditions identical with those of the rusticyanin experiments. Similar anion-dependent reactivity patterns were obtained with soluble iron whether the other reaction partner was rusticyanin or either of the two organometallic complexes. The Marcus theory of outer-sphere electron transfer reactions was applied to this set of kinetic data to demonstrate that the rusticyanin may possess at least two electron-transfer pathways for liganded iron, one where the pattern of electron-transfer reactivity is controlled largely by protein-independent activation parameters and one where the protein exhibits an anion-dependent kinetic specificity. The exact role of rusticyanin in the iron-dependent respiratory electron transport chain of T. ferrooxidans remains unclear.  相似文献   

5.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

6.
BioDeNOx is a novel technique for NOx removal from industrial flue gases. In principle, BioDeNOx is based on NO absorption into an aqueous Fe(II)EDTA2- solution combined with biological regeneration of that scrubber liquor in a bioreactor. The technical and economical feasibility of the BioDeNOx concept is strongly determined by high rate biological regeneration of the aqueous Fe(II)EDTA2- scrubber liquor and by EDTA degradation. This investigation deals with the Fe(II)EDTA2- regeneration capacity and EDTA degradation in a lab-scale BioDeNOx reactor (10-20 mM Fe(II)EDTA2-, pH 7.2 +/- 0.2, 55 degrees C), treating an artificial flue gas (1.5 m3/h) containing 60-155 ppm NO and 3.5-3.9% O2. The results obtained show a contradiction between the optimal redox state of the aqueous FeEDTA solution for NO absorption and the biological regeneration. A low redox potential (below -150 mV vs. Ag/AgCl) is needed to obtain a maximal NO removal efficiency from the gas phase via Fe(II)EDTA2- absorption. Fe(III)EDTA- reduction was found to be too slow to keep all FeEDTA in the reduced state. Stimulation of Fe(III)EDTA- reduction via periodical sulfide additions (2 mM spikes twice a week for the conditions applied in this study) was found to be necessary to regenerate the Fe(II)EDTA2- scrubber liquor and to achieve stable operation at redox potentials below -150 mV (pH 7.2 +/- 0.2). However, redox potentials of below -200 mV should be avoided since sulfide accumulation is unwanted because it is toxic for NO reduction. Very low values for biomass growth rate and yield, respectively, 0.043/d and 0.009 mg protein per mg ethanol, were observed. This might be due to substrate limitations, that is the electron acceptors NO and presumably polysulfide, or to physiological stress conditions induced by the EDTA rich medium or by radicals formed in the scrubber upon the oxidation of Fe(II)EDTA2- by oxygen present in the flue gas. Radicals possibly also induce EDTA degradation, which occurs at a substantial rate: 2.1 (+/-0.1) mM/d under the conditions investigated.  相似文献   

7.
R K Watt  R B Frankel  G D Watt 《Biochemistry》1992,31(40):9673-9679
Apo horse spleen ferritin undergoes a 6.3 +/- 0.5 electron redox reaction at -310 mV at pH 6.0-8.5 and 25 degrees C to form reduced apoferritin (apoMFred). Reconstituted ferritin containing up to 50 ferric ions undergoes reduction at the same potential, taking up one electron per ferric ion and six additional electrons by the protein. We propose that apo mammalian ferritin (apoMF) contains six redox centers that can be fully oxidized forming oxidized apoferritin (apoMFox) or fully reduced forming apoMFred. ApoMFred can be prepared conveniently by dithionite or methyl viologen reduction. ApoMFred is slowly oxidized by molecular oxygen but more rapidly by Fe(CN)6(3-) to apoMFox. Fe(III)-cytochrome c readily oxidizes apoMFred to apoMFox with a stoichiometry of 6 Fe(III)-cytochrome c per apoMFred, demonstrating a rapid interprotein electron-transfer reaction. Both redox states of apoMF react with added Fe3+ and Fe2+. Addition of eight Fe2+ to apoMFox under anaerobic conditions produced apoMFred and Fe3+, as evidenced by the presence of a strong g = 4.3 EPR signal. Subsequent addition of bipyridyl produced at least six Fe(bipyd)3(2+) per MF, establishing the reversibility of this internal electron-transfer process between the redox centers of apoMF and bound iron. Incubation of apoMFred with the Fe(3+)-ATP complex under anaerobic conditions resulted in the formation and binding of two Fe2+ and four Fe3+ by the protein. The various redox states formed by the binding of Fe2+ and Fe3+ to apoMFox and apoMFred are proposed and discussed. The yellow color of apoMF appears to be an integral characteristic of the apoMF and is possibly associated with its redox activity.  相似文献   

8.
The primatry compound formed in the reaction between H2O2 and cytochrome c peroxidase is oxidized two equivalents above the native enzyme. The two oxidized sites are thought to be an Fe(IV) and an amino acid radical. In the absence of oxidizable substrate, the Fe(IV) and radical sites decay by apparent first-order processes but at different rates. It is likely that the decay involves both intra- and intermolecular electron-transfer reactions. The reduction of the Fe(IV) site depends upon the pH with a minimum reduction rate of 2.9-10(-5)s(-1) at pH 6. At pH 4 and 6, the reduction of the Fe(IV) site is facilitated by prior oxidation of amino acid residues in the protein.  相似文献   

9.
Plastocyanin (PCu) from spinach leaves has been singly NO2-modified, purified by FPLC, and the position of modification at Tyr83 confirmed by trypsin digestion and amino-acid sequencing. Electron-transfer reactions of native and NO2-modified PCu with the inorganic redox partners [Fe(CN)6]3- and [Co(phen)3]3+, as oxidants for PCu(I), and [Fe(CN)6]4- and [Co(phen)3]2+ as reductants for PCu(II), have been studied as a function of pH. The acid dissociation constant for the phenolic group on NO2-Tyr83 PCu is 8.78 (average) for reduced, and 8.10 for oxidised protein, as compared to values greater than 10 for native protein. At I = 0.10 M (NaCl) NO2-modification brings about a 20 mV increase in reduction potential at pH less than 7 and deprotonation of the phenolic group a 20-25 mV decrease, both transmitted to and effective at the active site. Deprotonation brings about a 48% increase in rate for [Fe(CN)6]3- and a 47% decrease for [Fe(CN)6]4- in accordance with these changes. In the case of [Co(phen)3]3+, which reacts substantially at the remote site in the vicinity of Tyr83, the influence of deprotonation on the active site is supplemented by the negative charge of the phenolate, and a total increase of 131% is observed. These results can be understood on the basis of the electron-transfer theory, and add support to the belief that electron transfer kinetics of negatively and positively charged reactants are dominated by different sites on PCu for electron transfer, namely adjacent (close to His87) and remote (close to Tyr83), respectively.  相似文献   

10.
Biological reduction of nitric oxide (NO) to di-nitrogen (N(2)) gas in aqueous Fe(II)EDTA(2-) solutions is a key reaction in BioDeNOx, a novel process for NOx removal from flue gases. The mechanism and kinetics of the first step of NO reduction, that is, the conversion of NO to N(2)O, was determined in batch experiments using various types of inocula. Experiments were performed in Fe(II)EDTA(2-) medium (5-25 mM) under BioDeNOx reactor conditions (55 degrees C, pH 7.2 +/- 0.2) with ethanol as external electron donor. BioDeNOx reactor mixed liquor gave the highest NO reduction rates (+/-0.34 nmol s(-1) mg(prot)(-1)) with an estimated K(m) value for NO lower than 10 nM. The specific NO (to N(2)O) reduction rate depended on the NO (aq) and Fe(II)EDTA(2-) concentration as well as the temperature. The experimental results, complemented with kinetic and thermodynamic considerations, show that Fe(II)EDTA(2-), and not ethanol, is the primary electron donor for NO reduction, that is, the BioDeNOx reactor medium (the redox system Fe(II)EDTA(2-)/Fe(III)EDTA(-)) interferes with the NO reduction electron transfer chain and thus enhances the NO denitrification rate.  相似文献   

11.
嗜水气单胞菌J-1株弹性蛋白酶的表达、纯化及特性分析   总被引:1,自引:0,他引:1  
孟喜龙  刘永杰  陆承平 《微生物学报》2009,49(12):1613-1620
摘要:【目的】表达、纯化嗜水气单胞菌J-1株弹性蛋白酶,并对弹性蛋白酶的性质进行分析。【方法】以pET-32a为表达载体将弹性蛋白酶基因ahyB转化至大肠杆菌BL21菌株中进行诱导表达,表达重组酶用His TaqNi2+亲和层析柱纯化并用6 mol/L盐酸胍进行复性;利用硫酸铵分级沉淀、阴离子交换层析和分子筛层析对嗜水气单胞菌培养上清液中的弹性蛋白酶进行纯化。将【结果】从嗜水气单胞菌培养上清液中获得的弹性蛋白酶原酶的最适pH 为8.5,而表达重组酶为 10.0;对热的稳定性,原酶高于表达酶。两种形式酶的性  相似文献   

12.
The Escherichia coli Dps protein belongs to a specific family of bacterial ferritins; it is a nanosized particle that contains an inorganic core (~5 nm in diameter) and a protein shell with a size of 8–9 nm. The protein shell consists of 12 identical subunits with the known crystal structure of a dodecamer. The composition and structure of the core have been less studied. The core formation is associated with the oxidation products of Fe2+ ions in the ferroxidase centers of the protein. Thus, Fe2O3 oxides are the main compounds of the core. However, the mineralization properties of Fe2+ ions under anaerobic conditions in vitro may indicate a more complicated composition of the core in the native Dps protein. This paper presents a technique for the preparation of purified Dps samples for ultrahigh vacuum synchrotron experiments by X-ray absorption near edge structure spectroscopy of the iron absorption edge in the soft X-ray region. The conducted synchrotron experiments have revealed the presence of both trivalent and divalent iron ions in the octahedral and tetrahedral environment of oxygen atoms in the prepared biological samples. This points to a complex ionic composition of the core even in the native Dps protein, which has been isolated from aerobically grown bacteria.  相似文献   

13.
Human neutrophils contain a neutral metalloproteinase which degrades denatured collagens and potentiates the action of interstitial collagenase. This gelatinase is rapidly secreted from neutrophils stimulated with phorbol myristate acetate. The secreted enzyme has been purified by a combination of chromatography on DEAE-cellulose and gelatin-Sepharose. The purified enzyme was latent and had a specific activity of 24,000 units. Estimated molecular weight obtained by gel filtration was 150,000-180,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed three bands with relative molecular weights of 225,000, 130,000, and 92,000. Electrophoresis in the presence of a reducing agent revealed a single band of Mr = 92,000. All the proteins seen on the unreduced gel were found to contain proteolytic activity against gelatin and native type V collagen. Polyclonal antibodies were prepared against the Mr = 130,000 and 92,000 proteins. When analyzed by immunoblotting, both antibodies recognized all three proteins. Furthermore, the identical three proteins were identified by the antibodies when crude culture medium was immunoblotted. The purified enzyme was inhibited by EDTA and 1,10-phenanthroline but not by serine or thiol proteinase inhibitors, suggesting that the enzyme is a metalloendoproteinase. The enzyme had little or no activity against common protein substrates such as bovine serum albumin or casein. Native type I collagen was not cleaved under conditions where native type V collagen was extensively degraded.  相似文献   

14.
Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions   总被引:4,自引:0,他引:4  
The reduction of nitric oxide (NO) in aqueous solutions of Fe(II)EDTA is one of the core processes in BioDeNOx, an integrated physicochemical and biological technique for NO(x)() removal from industrial flue gases. NO reduction in aqueous solutions of Fe(II)EDTA (20-25 mM, pH 7.2 +/- 0.2) was investigated in batch experiments at 55 degrees C. Reduction of NO to N(2) was found to be biologically catalyzed with nitrous oxide (N(2)O) as an intermediate. Various sludges from full-scale denitrifying and anaerobic reactors were capable to catalyze NO reduction under thermophilic conditions. The NO reduction rate was not affected by the presence of ethanol or acetate. EDTA-chelated Fe(II) was found to be a suitable electron donor for the biological reduction of nitric oxide to N(2), with the concomitant formation of Fe(III)EDTA. In the presence of ethanol, EDTA-chelated Fe(III) was reduced to Fe(II)EDTA. This study strongly indicates that redox cycling of FeEDTA plays an important role in the biological denitrification process within the BioDeNOx concept.  相似文献   

15.
An ethylene-forming enzyme which forms ethylene from 2-oxo-4-methylthiobutyric acid (KMBA) was purified to an electrophoretically homogeneous state from a cell-free extract of Cryptococcus albidus IFP 0939. The presence of KMBA, NADH, Fe(III) chelated to EDTA and oxygen were essential for the formation of ethylene. When ferric ions, as Fe(III)EDTA, in the reaction mixture were replaced by Fe(II)EDTA under aerobic conditions, the non-enzymatic formation of ethylene was observed. Under anaerobic conditions in the presence of Fe(III)EDTA and NADH, the enzyme reduced 2 mol of Fe(III) with 1 mol of NADH to give 2 mol of Fe(II) and 1 mol NAD+, indicating that the ethylene-forming enzyme is an NADH-Fe(III)EDTA oxidoreductase. The role of NADH:Fe(III)EDTA oxidoreductase activity in the formation in vivo ethylene from KMBA is discussed.  相似文献   

16.
Beef heart muscle has been found to contain an enzyme which will rapidly and directly reduce metmyoglobin in vitro. Reduction rates are far greater than any previously reported for nonspecific or nonenzymatic systems. The enzyme is NADH-dependent and requires the presence of ferrocyanide ion for in vitro assay. The artificial electron carriers, dichlorophenolindophenol and methylene blue, are not required. Nonenzymatic reduction of metmyoglobin, which has previously been reported, was not encountered under the assay conditions described herein. Demonstration of enzymatic activity is dependent on a suitable myoglobin substrate, NADH, and ferrocyanide. An equimolar amount of cytochrome b5 was more effective than ferrocyanide in the enzymatic reduction of metmyoglobin. The methods for preparation of beef heart myoglobin and for purification of the enzyme are presented. The enzyme has been purified over 2000-fold. The enzyme has a pH optimum about 6.5 and a Km of 5.0 x 10(-5) M, and is unaffected by the absence of O2. Sodium dodecyl sulfate-gel electrophoresis revealed a molecular weight around 30,000. Purified enzyme does not react with lipoamide. The reaction is markedly influenced by the composition of the buffering milieu. Enzyme activity is inhibited by p-chloromercuriphenyl sulfonic acid, quinacrine dihydrochloride, and N-ethyl-maleimide. Activity was slightly stimulated by FMN. The characteristics of the enzymatic activity and the assay system are similar to those reported by Hegesh et al. (J. Lab. Clin. Med. 72, 339-344, 1968) for erythrocyte methemoglobin reductase.  相似文献   

17.
A comparison of the effect of temperature on the reduction of N2 by purified molybdenum nitrogenase and vanadium nitrogenase of Azotobacter chroococcum showed differences in behaviour. As the assay temperature was lowered from 30 degrees C to 5 degrees C N2 remained an effective substrate for V nitrogenase, but not Mo nitrogenase, since the specific activity for N2 reduction by Mo nitrogenase decreased 10-fold more than that of V nitrogenase. Activity cross-reactions between nitrogenase components showed the enhanced low-temperature activity to be associated with the Fe protein of V nitrogenase. The lower activity of homologous Mo nitrogenase components, although dependent on the ratio of MoFe protein to Fe protein, did not equal that of V nitrogenase even under conditions of high electron flux obtained at a 12-fold molar excess of Fe protein.  相似文献   

18.
(1) Cyanamide (N identical to C-NH2) has been shown to be a substrate for purified Mo-nitrogenases of Klebsiella pneumoniae and Azotobacter chroococcum, with apparent Km values near 0.8 mM. (2) Reduction products were CH4, CH3NH2 and NH3 formed by pathways requiring 6 or 8 electrons: N identical to CNH2 + 6e + 6H+----CH3NH2 + NH3; N identical to CNH2 + 8e + 8H+----CH4 + 2NH3 (3) Acetylene reduction and hydrogen evolution were inhibited more than 75% by cyanamide (10 mM). Cyanamide also inhibited total electron flux at nitrogenase protein component ratios (Fe/MoFe) near 10. (4) Cyanamide was also a substrate for the recently isolated Va-nitrogenase of A. chroococcum, but with an apparent Km of 2.6 mM showed weaker binding and an 8-fold lower Vmax than did either Mo-nitrogenase. (5) The component ratios of nitrogenase proteins favouring CH4 formation was 3.5 Fe/MoFe protein and 1 Fe/VaFe protein.  相似文献   

19.
Human serum amyloid P component (SAP) was expressed in the methylotrophic yeast Pichia pastoris. SAP cDNA was placed under control of regulatory sequences derived from the alcohol oxidase gene (AOX1), and its protein product was secreted using the Saccharomyces cerevisiae alpha-mating factor signal sequence. Recombinant SAP (r-SAP) was produced in a bioreactor with computer controlled fed-batch mode and purified by use of a C-terminal histidine tag. The yield of purified r-SAP was 3-4mg from 1L supernatant and 5-6mg from 1L cell paste, indicating that the majority of the produced SAP was not secreted. Treatment of the cell paste with EDTA increased the yield further by about 30%. The N-terminal of r-SAP purified from the supernatant showed non-complete cleavage of the alpha-mating factor signal sequence. Purified r-SAP, analyzed under native conditions, was shown to be a decamer, like purified human SAP (h-SAP), with monomers of 27kDa. Each monomer had one N-glycosylation site, positioned at the same site as for h-SAP. r-SAP bound to antibodies produced against h-SAP. Furthermore, r-SAP bound to ds DNA and influenza A virus subunits in a Ca(2+)-dependent manner and inhibited influenza A virus hemagglutination. These results indicate that r-SAP produced in P. pastoris has the same biological activity as purified h-SAP.  相似文献   

20.
Shewanella putrefaciens was grown on a series of ten alternate compounds as sole terminal electron acceptor. Each cell type was analyzed for Fe(III) reduction activity, absorbance maxima in reduced-minus-oxidized difference spectra and heme-containing protein content. High-rate Fe(III) reduction activity, pronounced difference maxima at 521 and 551 nm and a predominant 29.3 kDa heme-containing protein expressed by cells grown on Fe(III), Mn(IV), U(VI), SO3(2-) and S2O3(2-), but not by cells grown on O2, NO3, NO2-, TMAO or fumarate. These results suggest that microbial Fe(III) reduction activity is enhanced by anaerobic growth on metals and sulfur compounds, yet is limited under all other terminal electron-accepting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号