首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baseline external respiration and gas exchange values, as well as ventilatory thresholds and sensitivity to the O2 and CO2 stimuli in hypoxic and hypercapnic tests, were measured 1 h before and after a session of intermittent normobaric hypoxia (INH) (six repetitions with a 5-min inhalation of a gas mixture (10% O2) alternating with a 3-min inhalation of atmospheric air). After an INH session, the background CO2 level in the lungs increased by 10%. In the hypercapnic test, the actuation threshold of the ventilatory response did not change, whereas ventilatory sensitivity increased. The maximal pulmonary ventilation and the corresponding critical CO2 level in the lungs also increased at the end of the test. In the hypoxic test, the ventilatory response occurred at a decreased level of blood oxygenation after an INH session, the pulmonary ventilation level being decreased and the CO2 content in the lungs being increased at the end of the test. The data obtained evidence the maintenance of changed gas homeostasis for 1 h after an INH session. In this process, control of respiration was effected, with the hypoxic drive being weakened and the peripheral chemoreceptor sensitivity being decreased. The hypercapnic drive also increased, which may be determined by readjustment in the central mechanisms of respiratory regulation.  相似文献   

2.
Correlations between EEG findings and external respiration and gas exchange indices recorded prior to and after a single session of intermittent normobaric hypoxia were calculated by means of the Neirokartograf (MBN) program. Changes in the central regulation of respiration were observed for a period of more than one hour. The hypoxia caused a decline in EEG coherence in the left hemisphere and a decrease in the statistically significant correlations between the bioelectric rhythms of the , , and ranges and the external respiration and gas exchange indices.  相似文献   

3.
A study was made of the effects of a 20-day course of intermittent normobaric hypoxia (INH) on the parameters of gas exchange and the regulation of respiration in healthy volunteers. A phasic change in oxygen consumption at rest was observed: it decreased on the 10th day of the INH course and increased on the 20th day, with a parallel increase in the efficiency of pulmonary ventilation. According to the hypercapnic test, the ventilatory response threshold decreased, whereas ventilatory sensitivity increased; these effects were most pronounced during the first ten days of INH training and still detectable in recovery. It was assumed that the first phase of training (up to the tenth day) is associated with compensatory activation of pulmonary ventilation owing to an increase in peripheral and central chemosensitivity to the CO2 stimulus. In the second phase, which was associated with further slight changes in the parameters of external respiration, the gas exchange level is restored owing to an adaptive increase in efficiency of oxygen utilization in cells and tissues.  相似文献   

4.
Respiratory muscle remodeling occurs in human sleep apnea—a common respiratory disorder characterized by chronic intermittent hypoxia (CIH) due to recurrent apnea during sleep. We sought to determine if CIH causes remodeling in rat sternohyoid (upper airway dilator) and diaphragm muscles. Adult male Wistar rats were exposed to CIH (n=8), consisting of 90 sec of hypoxia (5% at the nadir; SaO2 ~80%)/90 sec of normoxia, 8 hr per day, for 7 consecutive days. Sham animals (n=8) were exposed to alternating air/air cycles in parallel. The effect of CIH on myosin heavy-chain (MHC) isoform (1, 2a, 2x, 2b) distribution, sarcoplasmic reticulum calcium ATPase (SERCA) isoform distribution, succinate dehydrogenase activity, glycerol phosphate dehydrogenase activity, and Na+/K+ ATPase pump content was determined. Sternohyoid muscle structure was unaffected by CIH treatment. CIH did not alter oxidative/glycolytic capacity or the Na+/K+-ATPase pump content of the diaphragm. CIH significantly increased the areal density of MHC 2b fibers in the rat diaphragm, and this was associated with a shift in SERCA proteins from SERCA2 to SERCA1. We conclude that CIH causes a slow-to-fast fiber transition in the rat diaphragm after just 7 days of treatment. Respiratory muscle functional remodeling may drive aberrant functional plasticity such as decreased muscle endurance, which is a feature of human sleep apnea.  相似文献   

5.
Human Physiology - This study involving ten apparently healthy male volunteers aged 19 to 31 years was aimed at establishing possible effects of a three-week course of normobaric intermittent...  相似文献   

6.
BackgroundThere has been considerable debate as to whether different modalities of simulated hypoxia induce similar cardiac responses.ResultsAll 14 subjects completed the experiment at GHA, 11 at NN, 12 under NH, and 6 under HH. The four groups were similar in age, sex and baseline demographics. At baseline rest right ventricular (RV) systolic pressure (RVSP, p = 0.0002), pulmonary vascular resistance (p = 0.0002) and acute mountain sickness (AMS) scores were higher and the SpO2 lower (p<0.0001) among all three hypoxic groups (GHA, NH and HH) compared with NN. At both 15 minutes and 120 minutes post exercise, AMS scores, Cardiac output, septal S’, lateral S’, tricuspid S’ and A’ velocities and RVSP were higher and SpO2 lower with all forms of hypoxia compared with NN. On post-test analysis, among the three hypoxia groups, SpO2 was lower at baseline and 15 minutes post exercise with GHA (89.3±3.4% and 89.3±2.2%) and HH (89.0±3.1 and (89.8±5.0) compared with NH (92.9±1.7 and 93.6±2.5%). The RV Myocardial Performance (Tei) Index and RVSP were significantly higher with HH than NH at 15 and 120 minutes post exercise respectively and tricuspid A’ was higher with GHA compared with NH at 15 minutes post exercise.ConclusionsGHA, NH and HH produce similar cardiac adaptations over short duration rest despite lower SpO2 levels with GHA and HH compared with NH. Notable differences emerge following exercise in SpO2, RVSP and RV cardiac function.  相似文献   

7.
A study of the functioning of the respiratory system and sympathoadrenal system (SAS) after adaptation to intermittent hypoxia in humans of different ages is described. Considering our own findings and published data, the author discusses the possible mechanisms mediating modifications of the respiratory function and regulating the SAS activity during adaptation to hypoxia. A key role of the carotid glomuses in the modulation of the functional parameters of external respiration and SAS under conditions of hypoxic adaptation is emphasized.  相似文献   

8.
BackgroundExperimental models of intermittent hypoxia (IH) have been developed during the last decade to investigate the consequences of obstructive sleep apnea. IH is usually associated with detrimental metabolic and vascular outcomes. However, paradoxical protective effects have also been described depending of IH patterns and durations applied in studies. We evaluated the impact of short-term IH on vascular and metabolic function in a diet-induced model of metabolic syndrome (MS).MethodsMice were fed either a standard diet or a high fat diet (HFD) for 8 weeks. During the final 14 days of each diet, animals were exposed to either IH (1 min cycle, FiO2 5% for 30s, FiO2 21% for 30s; 8 h/day) or intermittent air (FiO2 21%). Ex-vivo vascular reactivity in response to acetylcholine was assessed in aorta rings by myography. Glucose, insulin and leptin levels were assessed, as well as serum lipid profile, hepatic mitochondrial activity and tissue nitric oxide (NO) release.ResultsMice fed with HFD developed moderate markers of dysmetabolism mimicking MS, including increased epididymal fat, dyslipidemia, hepatic steatosis and endothelial dysfunction. HFD decreased mitochondrial complex I, II and IV activities and increased lactate dehydrogenase (LDH) activity in liver. IH applied to HFD mice induced a major increase in insulin and leptin levels and prevented endothelial dysfunction by restoring NO production. IH also restored mitochondrial complex I and IV activities, moderated the increase in LDH activity and liver triglyceride accumulation in HFD mice.ConclusionIn a mouse model of MS, short-term IH increases insulin and leptin levels, restores endothelial function and mitochondrial activity and limits liver lipid accumulation.  相似文献   

9.
Journal of Evolutionary Biochemistry and Physiology - The study was carried out in male Wistar rats. Animals were randomly divided into normoxic control groups and groups exposed to normobaric...  相似文献   

10.
When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (∼3%) and maximal strength (1RM) (∼6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press.  相似文献   

11.
In experiments on Wistar rats, we studied the role of changes in the state of glutamatergic transmission in the course of adaptation of the system of respiratory control to intermittent hypoxia. The volume/temporal parameters of respiration were estimated according to characteristics of EMG activity (amplitude, integral intensity of EMG discharges) recorded from the diaphragmatic muscle. Changes in EMG activity of the diaphragm induced by acute hypoxia (breathing a 12% О2-containing gas mixture) were estimated before and after of a 14-day-long course of intermittent hypoxia trainings and before and after inductions of a blocker of NMDA receptors, МK-801. The results prove that the glutamatergic transmitter system is significantly involved in the reaction of the respiratory system to presentation of a hypoxic stimulus within all stages of formation of the ventilatory response, both before and after the action of intermittent hypoxia. Blocking of NMDA receptors under conditions of adaptation to intermittent hypoxia exerted a more intense influence on the amplitude of respiratory EMG discharges of the diaphragm than on their frequency.  相似文献   

12.
F Cui  L Gao  F Yuan  ZF Dong  ZN Zhou  DD Kline  Y Zhang  DP Li 《PloS one》2012,7(7):e41656

Background

Hypobaric intermittent hypoxia (HIH) produces many favorable effects in the cardiovascular system such as anti-hypertensive effect. In this study, we showed that HIH significantly attenuated a depressor response induced by acute hypoxia.

Methodology/Principal Findings

Sprague-Dawley rats received HIH in a hypobaric chamber simulating an altitude of 5000 m. The artery blood pressure (ABP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in anesthetized control rats and rats received HIH. The baseline ABP, HR and RSNA were not different between HIH and control rats. Acute hypoxia-induced decrease in ABP was significantly attenuated in HIH rat compared with control rats. However, acute hypoxia-induced increases in HR and RSNA were greater in HIH rat than in control rats. After removal of bilateral ascending depressor nerves, acute hypoxia-induced depressor and sympathoexcitatory responses were comparable in control and HIH rats. Furthermore, acute hypoxia-induced depressor and sympathoexcitatory responses did not differ between control and HIH groups after blocking ATP-dependent K+ channels by glibenclamide. The baroreflex function evaluated by intravenous injection of phenylephrine and sodium nitroprusside was markedly augmented in HIH rats compared with control rats. The pressor and sympathoexcitatory responses evoked by intravenous injection of cyanide potassium were also significantly greater in HIH rats than in control rats.

Conclusions/Significance

Our findings suggest that HIH suppresses acute hypoxia-induced depressor response through enhancement of baroreflex and chemoreflex function, which involves activation of ATP-dependent K+ channels. This study provides new information and underlying mechanism on the beneficiary effect of HIH on maintaining cardiovascular homeostasis.  相似文献   

13.
Obstructive sleep apnea (OSA) is a syndrome characterized by intermittent nocturnal hypoxia, sleep fragmentation, hypercapnia and respiratory effort, and it has been associated with several complications, such as diabetes, hypertension and obesity. Quantitative real-time PCR has been performed in previous OSA-related studies; however, these studies were not validated using proper reference genes. We have examined the effects of chronic intermittent hypoxia (CIH), which is an experimental model mainly of cardiovascular consequences of OSA, on reference genes, including beta-actin, beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, hypoxanthine guanine phosphoribosyl transferase and eukaryotic 18S rRNA, in different areas of the brain. All stability analyses were performed using the geNorm, Normfinder and BestKeeper software programs. With exception of the 18S rRNA, all of the evaluated genes were shown to be stable following CIH exposure. However, gene stability rankings were dependent on the area of the brain that was analyzed and varied according to the software that was used. This study demonstrated that CIH affects various brain structures differently. With the exception of the 18S rRNA, all of the tested genes are suitable for use as housekeeping genes in expression analyses.  相似文献   

14.
《生命科学研究》2015,(6):554-558
高原低氧是青藏高原主要的环境限制因子之一,高原鼢鼠(Myospalax baileyi)是青藏高原特有的地下啮齿类动物,受到高原低氧和洞穴低氧的双重压力。近年来,高原鼢鼠低氧适应主要生理特征及低氧适应关键基因越来越为人们所关注。这些研究结果对阐明高原鼢鼠低氧适应机制具有重要意义,并将对探索人类对低氧环境的适应能力以及人类高原病的防治产生巨大的影响。  相似文献   

15.
Functional and morphological changes were studied in overweight persons in tests with various combinations of normobaric hypoxia and physical training. It was shown that normobaric hypoxia combined with training can be used for increasing physical working capacity and aerobic capacity in overweight persons. A combination of physical training and breathing hypoxic gas mixtures was demonstrated to be the most effective method of correcting and increasing the physiological functional potential in overweight persons.  相似文献   

16.
目的设计制造自动控制的长期间断低氧大鼠饲养舱,以建立符合睡眠呼吸暂停综合征(SAS)特征的大鼠模型。方法①由单片机自动控制,通过电磁阀控制供应各气体的流量,使饲养舱内的氧浓度能够在9%~21%的范围内快速地变化。②50只SD大鼠均分为五组,即间断低氧2周组(2H)和4周组(4H)、空气对照2周组(2C)和4周组(4C)及正常对照组(NC)。间断低氧组在密闭的舱中间断性地呼吸低氧气体,90s一次循环,每天8h,每周7d。对照组呼吸空气。结果通过单片机能自动调节医用氮气与氧气的输入,使舱内低氧时氧浓度在9.0%±1.5%,复氧时氧浓度在21.0%±0.5%。大鼠平均肺动脉压:2H组较2C组高18.71%,4H组较4C组高16.87%(P均〈0.05);右心室收缩末期压及最大变化速率RVESP、RV+dp/dt和RV-dp/dt:4H组较4C组分别高36.36%、56.35%和55.43%(P均〈0.01),4H组比2H组分别高88.85%、19.49%和80.97%(P均〈0.01);而2C组、4C组与NC组上述指标各组间均无显著性差异(P均〉0.05)。结论该大鼠饲养舱能自动、精确控制舱内氧浓度、循环时间,能复制出比较符合SAS病理生理变化特征的动物模型。  相似文献   

17.
18.

Background

Neuroblastoma is the most common extracranial pediatric solid tumor. Intermittent hypoxia, which is characterized by cyclic periods of hypoxia and reoxygenation, has been shown to positively modulate tumor development and thereby induce tumor growth, angiogenic processes, and metastasis. Bone is one of the target organs of metastasis in advanced neuroblastoma Neuroblastoma cells produce osteoclast-activating factors that increase bone resorption by the osteoclasts. The present study focuses on how intermittent hypoxia preconditioned SH-SY5Y neuroblastoma cells modulate osteoclastogenesis in RAW 264.7 cells compared with neuroblastoma cells grown at normoxic conditions.

Methods

We inhibited HIF-1α and HIF-2α in neuroblastoma SH-SY5Y cells by siRNA/shRNA approaches. Protein expression of HIF-1α, HIF-2α and MAPKs were investigated by western blotting. Expression of osteoclastogenic factors were determined by real-time RT-PCR. The influence of intermittent hypoxia and HIF-1α siRNA on migration of neuroblastoma cells and in vitro differentiation of RAW 264.7 cells were assessed. Intratibial injection was performed with SH-SY5Y stable luciferase-expressing cells and in vivo bioluminescence imaging was used in the analysis of tumor growth in bone.

Results

Upregulation of mRNAs of osteoclastogenic factors VEGF and RANKL was observed in intermittent hypoxia-exposed neuroblastoma cells. Conditioned medium from the intermittent hypoxia-exposed neuroblastoma cells was found to enhance osteoclastogenesis, up-regulate the mRNAs of osteoclast marker genes including TRAP, CaSR and cathepsin K and induce the activation of ERK, JNK, and p38 in RAW 264.7 cells. Intermittent hypoxia-exposed neuroblastoma cells showed an increased migratory pattern compared with the parental cells. A significant increase of tumor volume was found in animals that received the intermittent hypoxia-exposed cells intratibially compared with parental cells.

Conclusions

Intermittent hypoxic exposure enhanced capabilities of neuroblastoma cells in induction of osteoclast differentiation in RAW 264.7 cells. Increased migration and intratibial tumor growth was observed in intermittent hypoxia-exposed neuroblastoma cells compared with parental cells.  相似文献   

19.
Cardiovascular indices were analyzed in young healthy males exposed to normobaric hypoxia (breathing a gas mixture containing 10% O2 for 16 min). There was a marked variation in individual responses. A linear relationship was observed between the individual blood oxygen saturation at the end of exposure and the baseline muscle blood flow (MBF). Moreover, blood oxygen saturation decreased in subjects with an initially high forearm MBF and remained unchanged or even slightly increased in subjects with a low forearm MBF. After hypoxic exposure (10–15 min), the MBF continued to decrease, venous capacity increased, and postocclusion hyperemic response decreased. It is suggested that hypoxic exposure activates the neuroreflex mechanisms regulating the peripheral blood flow and that the peripheral vascular response to acute hypoxia depends largely on the baseline blood flow in skeletal muscles.  相似文献   

20.
Seven male volunteers aged 22–27 years took part in the laboratory experiment for the determination of body response to acute normobaric hypoxia where they inhaled an oxygen–nitrogen gas mixture (9% of О2) for 25 min. At least 100 cardiac cycles at each of six experimental time points have been recorded by using an electrocardiogram (ECG) recording technique in standard lead II. Mean heart rate (±SD) before hypoxia was 64 ± 2 bpm; the duration of the PP interval was 0.94 ± 0.07 s, that of the PT interval was 0.51 ± 0.02 s, and that of the TP segment was 0.41 ± 0.07 s. Five minutes after hypoxia, it has been found that heart rate (HR) increased by 19%; the duration of the PP and PT intervals and TP segment decreased by 16%, 6%, and 30%, respectively. Twenty minutes after hypoxia, all the parameters reached their initial values. Five and fifteen minutes after hypoxia, HR reached 59 ± 3 bpm; PP interval and TP segment increased by 9% and 14%, respectively, compared to the initial values; PT interval was the same as the initial value at the baseline. The correlation coefficient rp (PP/PT) was 0.10–0.54; rp (PP/TP) was 0.94–0.99. The intervals PP and TP were found to be identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号