首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
组蛋白甲基化修饰是肿瘤表观遗传学修饰异常的研究热点。这种修饰涉及肿瘤细胞的生物学行为,并参与肿瘤发生、发展和病理转归。含有SET结构域和MYND结构域蛋白的SMYD家族,是一组重要的赖氨酸甲基转移酶,主要通过组蛋白或非组蛋白甲基化修饰,调控其下游靶基因和肿瘤关键信号通路,参与肿瘤发生和发展的整个过程。SMYD家族影响肿瘤细胞的增殖、分化、凋亡、血管形成、侵袭和转移以及化疗敏感性等生物学特性。SMYD家族成员作为肿瘤新型分子诊断标志物和治疗靶点,有着巨大的临床应用价值和意义。本文综述了SMYD家族在肿瘤中的转录调控机制、生物学功能、临床研究意义及其作为分子靶点的抗肿瘤新药研究。  相似文献   

3.
microRNA异常表达促进癌症的发生发展.本研究通过microRNA表达谱分析2个肝癌细胞和2个正常细胞microRNA的表达,寻找与肝癌相关的microRNA,发现microRNA-215在肝癌细胞中高表达,q RT-PCR验证microRNA-215在肝癌细胞呈显著高表达.进一步研究发现,microRNA-215直接靶向Dicer1基因的3′UTR并抑制Dicer1蛋白表达,Dicer1是microRNA加工成熟过程中必需的蛋白.过表达microRNA-215抑制Dicer1从而促进肝癌细胞迁移和转化,而抑制microRNA-215表达起相反作用.Dicer1抑制后,许多抑癌microRNA表达被抑制,从而促进迁移和转化.相对于癌旁组织,Dicer1在肝癌组织呈明显低表达.本研究揭示,microRNA-215异常活化并抑制Dicer1表达与肝癌发展相关.  相似文献   

4.
5.
SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.Subject terms: Colon cancer, Apoptosis  相似文献   

6.
7.

The aim of this study is to assess the expression levels of SMYD2 in human tissue samples and cells of colon cancer, and further explore the potential mechanisms of SMYD2 in colon cancer progression. Quantitative PCR and Immunohistochemical (IHC) assays were performed to detect SMYD2 expression in 76 tissue samples of colon cancer tissues and the corresponding normal tissues. The potential correlations between SMYD2 expression levels and clinical pathological features were assessed. We further detected the effects of SMYD2 on the proliferation, invasion and apoptosis of colon cancer cells and on ERBB2/FUT4 signaling pathway through Brdu assay, transwell assay and flow cytometry assay, respectively. The potential effects of SMYD2 on tumor growth were explored using an animal model. We demonstrated the possible involvement of SMYD2 in the progression of colon cancer. We found the high expression of SMYD2 in human colon cancer tissues and cells, and found the correlations between SMYD2 expression and the clinicopathological features including vascular invasion (P?=?0.007*), TNM stage (P?=?0.016*) and lymph node metastasis (P?=?0.011*), of patients with colon cancer. Our data further confirmed that SMYD2 affects cell proliferation, invasion, and apoptosis of colon cancer cells via the regulation of ERBB2/FUT4 signaling pathway. We also demonstrated SMYD2 contributed to tumor growth of colon cancer cells in vivo. We investigated the potential involvement of SMYD2 in the progression of colon, and therefore confirmed SMYD2 as a possible therapeutic target for colon cancer.

  相似文献   

8.
9.
10.
Long non-coding RNAs (lncRNAs) are crucial regulators of tumorigenesis and progression in human cancer, including hepatocellular carcinoma (HCC). However, the role of most lncRNAs that are dysregulated in HCC remains to be elucidated. Here, we investigated the role of OSER1-AS1 in the progression of HCC. The results of database and qRT-PCR analysis demonstrated that OSER1-AS1 was highly expressed in HCC tissues and the high expression of OSER1-AS1 was closely associated with larger tumor size, advanced tumor stages, lower disease free survival and overall survival of HCC patients. OSER1-AS1 knockdown significantly inhibited the proliferation, invasion and migration of HCC cells, and induced the apoptosis. In addition, the dual luciferase reporter assay directly demonstrated that OSER1-AS1 functioned as a molecular sponge for miR-372-3p to promote Rab23 expression. Moreover, the results of immunohistochemistry and western blot analysis showed that Rab23 was highly expressed in HCC tissues, and the high expression of Rab23 was closely associated with the poor overall survival of HCC patients. Immunofluorescence assay also found the subcellular localization of Rab23 in HCC cells. Rab23 was obviously downregulated in cells that were transfected with miR-372-3p mimics. MiR-372-3p mimics significantly inhibited the proliferation and invasion of HCC cells). Rab23 restoration partially reversed miR-372-3p-induced tumor suppressive effects on HCC cells. In conclusion, we found that OSER1-AS1 acted as a ceRNA to sponge miR-372-3p, thereby positively regulating the Rab23 expression and ultimately acting as a tumor suppressor gene in HCC progression.  相似文献   

11.
《Cellular signalling》2014,26(6):1347-1354
S1PR1 plays a crucial role in promoting proliferation of hepatocellular carcinoma (HCC). Over expression of S1PR1 is observed in HCC cell lines. The mechanisms underlying the aberrant expression of S1PR1 are not known well. MircroRNAs are important regulators of gene expression and disproportionate microRNAs can result in dysregulation of oncogenes in cancer cells. In this study, we found that miR-363, a potential tumor suppressor microRNA, downregulated the expression of S1PR1 and inhibited the proliferation of HCC cells. Bioinformatic analysis predicted a putative binding site of miR-363 within the 3′-UTR of S1PR1 mRNA. Luciferase reporter assay showed that miR-363 directly targeted the 3′-UTR of S1PR1 mRNA. Transfection of miR-363 mimics suppressed S1PR1 expression in HCC cells, followed by the repression of the activation of ERK and STAT3. Moreover, we found that the expression of downstream genes of ERK and STAT3, including PDGF-A, PDGF-B, MCL-1 and Bcl-xL, was suppressed after miR-363 transfection. Taken together, the present study demonstrated that miR-363 was a negative regulator of S1PR1 expression in HCC cells and inhibited cell proliferation, suggesting that the miR-363/S1PR1 pathway might be a novel target for the treatment of HCC.  相似文献   

12.
13.

Background

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most common cause of cancer-related death worldwide. The 5-year survival rate remains low despite considerable research into treatments of HCC, including surgery, radiotherapy and chemotherapy. Many mechanisms within HCC still require investigation, including the influence of hypoxia, which has a crucial role in many cancers and is associated with metastasis. Hypoxia inducible factor-1α (HIF-1α) is known to regulate the expression of many chemokines, including interleukin-8 (IL-8), which is associated with tumor metastasis. Although many studies have reported that HIF-1α is associated with HCC migration and invasion, the underlying mechanisms remain unknown.

Methods

The expression level of HIF-1α was determined in HCC cells. The correlation of IL-8 and HIF-1α expressions was assessed via knockdown of HIF-1α. HCC cells were also used to assess the influence of HIF-1α on HCC cell migration and invasion. LY294002, an inhibitor of the Akt pathway, was used to confirm the associated signaling pathways.

Results

We observed a significant attenuation of cell migration and invasion after silencing of HIF-1α. Exogenously expressing IL-8 restored migration and invasion. Akt was found to be involved in this process.

Conclusion

Hypoxia promotes HCC cell migration and invasion through the HIF-1α–IL-8–Akt axis.
  相似文献   

14.
Platelet Derived Growth Factor (PDGF) and sphingosine-1-phosphate (S1P) pathways play a key role in mural cell recruitment during tumor growth and angiogenesis. Fingolimod, a S1P analogue, has been shown to exert antitumor and antiangiogenic properties. However, molecular targets and modes of action of fingolimod remain unclear. In this study, we confirmed the antagonizing action of S1P and PDGF-B on rat vascular smooth muscle cell (VSMCs) growth and migration. We then compared siRNA and/or fingolimod (100 nM) treatments on PDGFR-β, S1PR1 S1PR2 and S1PR3 expression. Fingolimod induced a 50% reduction in S1PR3 protein expression which was cumulative with that obtained with anti-S1PR3 siRNA. We found that siRNA-induced inhibition of both PDGFR-β and S1PR3 was the most effective means to block VSMC migration induced by PDGF-B. Finally, we observed that fingolimod treatment associated with anti-S1PR1 siRNA principally inhibited VSMC growth while in combination with anti-S1PR3 siRNA it strongly inhibited VSMC migration. These results suggest that for rat VSMCs, the PDGFR-S1PR1 pathway is predominantly dedicated to cell growth while PDGFR-S1PR3 stimulates cell migration. As an S1P analogue, fingolimod is considered a potent activator of S1PR1 and S1PR3. However, its action on the PDGFR-S1PR platform appears to be dependent on S1PR1 and S1PR3 specific downregulation. Considering that the S1P pathway has already been shown to exert various crosstalks with tyrosine kinase pathways, it seems of great interest to evaluate fingolimod potential in combination with the numerous tyrosine kinase inhibitors used in oncology.  相似文献   

15.
We recently report that the expression of polycomb chromobox 4(Cbx4)is significantly correlated with the overall survival of a great cohort of hepatocellular carcinoma(HCC)patients and it enhances hypoxia-induced vascular endothelial growth factor(VEGF)expression and angiogenesis in HCC cells through enhancing sumoylation of hypoxia inducible factor-1alpha(HIF-1α).Here we continue to investigate the potential effects of Cbx4 on the migration and metastasis of the metastatic HCC cell line MHCC97L.Our results show that Cbx4 overexpression in the cell line increases the in vitro vessel formation of vascular endothelial cells in its SUMO interaction motifs-dependent manner,and promotes the in vitro migration of the cancer cell,which can be effectively abrogated by anti-VEGF antibody.Although Cbx4 expression does not impact the in vitro growth of MHCC97L cells,it still promotes the progression and metastasis of orthotopically transplanted tumors in nude mice.These results further support the role of Cbx4 as a SUMO E3 ligase in the progression and metastasis of HCC.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号