首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging attenuates the increase in muscle sympathetic nerve activity (MSNA) and elicits hypotension during otolith organ engagement in humans. The purpose of the present study was to determine the neural and cardiovascular responses to otolithic engagement during orthostatic stress in older adults. We hypothesized that age-related impairments in the vestibulosympathetic reflex would persist during orthostatic challenge in older subjects and might compromise arterial blood pressure regulation. MSNA, arterial blood pressure, and heart rate responses to head-down rotation (HDR) performed with and without lower body negative pressure (LBNP) in prone subjects were measured. Ten young (27 +/- 1 yr) and 11 older subjects (64 +/- 1 yr) were studied prospectively. HDR performed alone elicited an attenuated increase in MSNA in older subjects (Delta106 +/- 28 vs. Delta20 +/- 7% for young and older subjects). HDR performed during simultaneous orthostatic stress increased total MSNA further in young (Delta53 +/- 15%; P < 0.05) but not older subjects (Delta-5 +/- 4%). Older subjects demonstrated consistent significant hypotension during HDR performed both alone (Delta-6 +/- 2 mmHg) and during LBNP (Delta-7 +/- 2 mmHg). These data provide experimental support for the concept that age-related impairments in the vestibulosympathetic reflex persist during orthostatic challenge in older adults. Furthermore, these findings are consistent with the concept that age-related alterations in vestibular function might contribute to altered orthostatic blood pressure regulation with age in humans.  相似文献   

2.
Spinal cord-injured (SCI) individuals, having a sympathetic nervous system lesion, experience hypotension during sitting and standing. Surprisingly, they experience few syncopal events. This suggests adaptations in cerebrovascular regulation. Therefore, changes in systemic circulation, cerebral blood flow, and oxygenation in eight SCI individuals were compared with eight able-bodied (AB) individuals. Systemic circulation was manipulated by lower body negative pressure at several levels down to -60 mmHg. At each level, we measured steady-state blood pressure, changes in cerebral blood velocity with transcranial Doppler, and cerebral oxygenation using near-infrared spectroscopy. We found that mean arterial pressure decreased significantly in SCI but not in AB individuals, in accordance with the sympathetic impairment in the SCI group. Cerebral blood flow velocity decreased during orthostatic stress in both groups, but this decrease was significantly greater in SCI individuals. Cerebral oxygenation decreased in both groups, with a tendency to a greater decrease in SCI individuals. Thus present data do not support an advantageous mechanism during orthostatic stress in the cerebrovascular regulation of SCI individuals.  相似文献   

3.
Conventional spectral analyses of heart rate variability (HRV) have been limited to stationary signals and have not allowed the obtainment of information during transient autonomic cardiac responses. In the present study, we evaluated the ability of the short-time Fourier transform (STFT) method to detect transient changes in vagal effects on the heart. We derived high-frequency power (HFP, 0.20-0.40 Hz) as a function of time during active orthostatic task (AOT) from the sitting to standing posture before and after selective vagal (atropine sulfate 0.04 mg/kg) and sympathetic (metoprolol 0.20 mg/kg) blockades. The HFP minimum point during the first 30 s after standing up was calculated and compared with sitting and standing values. Reactivity scores describing the fast and slow HFP responses to AOT were calculated by subtracting the minimum and standing values from the sitting value, respectively. The present results, obtained without controlled respiration, showed that in the drug-free condition, HFP decreased immediately after standing up (P < 0.001) and then gradually increased toward the level characteristic for the standing posture (P < 0.001), remaining lower than in the sitting baseline posture (P < 0.001). The magnitudes of the fast and slow HFP responses to AOT were abolished by the vagal blockade (P < 0.001) and unaffected by the sympathetic blockade. These findings indicate that HFP derived by the STFT method provided a tool for monitoring the magnitude and time course of transient changes in vagal effects on the heart without the need to interfere with normal control by using blocking drugs.  相似文献   

4.
During orthostatic stress, arterial and cardiopulmonary baroreflexes play a key role in maintaining arterial pressure by regulating heart rate. This study presents a mathematical model that can predict the dynamics of heart rate regulation in response to postural change from sitting to standing. The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse least squares problem for parameter estimation and successfully demonstrate that our mathematical model can accurately predict heart rate dynamics observed in data obtained from healthy young, healthy elderly, and hypertensive elderly subjects. One of our key findings indicates that, to successfully validate our model against clinical data, it is necessary to include the vestibulo-sympathetic reflex. Furthermore, our model reveals that the transfer between the nerve firing and blood pressure is nonlinear and follows a hysteresis curve. In healthy young people, the hysteresis loop is wide, whereas, in healthy and hypertensive elderly people, the hysteresis loop shifts to higher blood pressure values, and its area is diminished. Finally, for hypertensive elderly people, the hysteresis loop is generally not closed, indicating that, during postural change from sitting to standing, baroreflex modulation does not return to steady state during the first minute of standing.  相似文献   

5.
We tested the hypothesis that individuals with Down syndrome, but without congenital heart disease, exhibit altered autonomic cardiac regulation. Ten subjects with Down syndrome (DS) and ten gender-and age-matched healthy control subjects were studied at rest and during active orthostatism, which induces reciprocal changes in sympathetic and parasympathetic traffic to the heart. Autoregressive power spectral analysis was used to investigate R-R interval variability. Baroreflex modulation of sinus node was assessed by the spontaneous baroreflex sequences method. No significant differences between DS and control subjects were observed in arterial blood pressure at rest or in response to standing. Also, R-R interval did not differ at rest. R-R interval decreased significantly less during standing in DS vs. control subjects. Low-frequency (LFNU) and high-frequency (HFNU) (both expressed in normalized units) components of R-R interval variability did not differ between DS and control subjects at rest. During standing, significant increase in LFNU and decrease in HFNU were observed in control subjects but not in DS subjects. Baroreflex sensitivity (BRS) did not differ between DS and control subjects at rest and underwent significant decrease on going from supine to upright in both groups. However, BRS was greater in DS vs. control subjects during standing. These data indicate that subjects with DS exhibit reduced HR response to orthostatic stress associated with blunted sympathetic activation and vagal withdrawal and with a lesser reduction in BRS in response to active orthostatism. These findings suggest overall impairment in autonomic cardiac regulation in DS and may help to explain the chronotropic incompetence typically reported during exercise in subjects with DS without congenital heart disease.  相似文献   

6.
The mechanisms of hemodynamic responses to orthostatic stresses and orthostatic stability (OS) of cosmonauts were studied before and after short-and long-term spaceflights (SFs) using orthostatic tests, as well as before, during, and after SFs using ultrasonic methods in tests with exposure to lower body negative pressure (LBNP). The capacitance and distensibility of the veins of the lower extremities were studied using occlusive air plethysmography before, during, and after SFs of different durations. A stay in microgravity has been proved to result in detraining of, mainly, the vascular mechanisms of compensating orthostatic perturbations. It has been established that the decrease in OS under the influence of microgravity is determined by a reduction of the vasoconstrictive ability of large blood vessels of the lower extremities; an increase in venous distensibility and capacitance of the legs; and an impairment of blood flow regulation, which leads to a cerebral blood flow deficit in orthostatic stresses, and of the initial individual OS before the flight. The results of preflight studies of hemodynamics by ultrasonic methods at LBNP and the data of orthostatic tests before SFs make it possible to predict the degree of decrease of OS after an SF proceeding in the normal mode. At the same time, the data of ultrasonic blood flow examination provide more a accurate estimation of OS and make it possible to assess the physiological reserves of hemodynamic regulation and to reveal the loss of regulation capacity even in cases where integrated indices (heart rate and blood pressure) are within the normal ranges.  相似文献   

7.
In this work there is shown a variability of heart rate and time delay of pulse wave of main arteries in schoolchildren.There is used the function of ordinary coherence of HR and DPW (time delay of pulse wave). This function reflects the rate of statistical linear relation of two processes in heart and blood vessels. A high tone of sympathetic part of vegetative nervous activity in schoolchildren increases CO (cardeiac out), shortens the hard connection phase of HR and DPW and results in a new system characteristic--arterial rigidity. There are presented results of passive orthostatic test and pharmacological tests on activation of sympathetic part of vegetative nervous activity in schoolchildren with heart rate problems.  相似文献   

8.
Tkachenko  L. N.  Perederii  G. S.  Mekhova  L. S. 《Neurophysiology》2000,32(5):343-348
In 30- to 45-year-old healthy men (workers of the coal mines), we studied using correlation analysis the interrelations between the manifestations of autonomic regulation of the heart rhythm related to the active orthostatic test (AOT) and the state of systemic circulation in the physical loading test (PhLT). It has been concluded that the pattern of correlations is determined by the direction of autonomic regulatory drives within a transitional period of the AOT. In the group of tested persons with clear domination of ergotropic reactions, the variation range and power of a slow wave component of the heart rhythm in the standing posture strictly correlated with the cardial stroke, peripheral resistance, vascular tone, myocardial tension, and aerobic productivity. In persons with relatively balanced ergotropic and trophotropic effects, the AOT transitional period was characterized by correlations of nearly all indices of autonomic regulation of the heart rhythm with the indices of central hemodynamics of the PhLT.  相似文献   

9.
The paper presents the results of the investigation of autonomic regulation of blood circulation and regulation of the modification by peroral amlodipine and myostimulation during seven-day dry immersion. It was shown that autonomic regulation readjusted in immersion towards predominance of sympathetic mechanisms. Myostimulation and peroral amlodipine modified regulation substantially mobilizing high level suprasegmentary structures. Pharmaceutical intervention seems to have a more complex and varying effect on people, including side effects. Presumably this was the cause of the poor orthostatic tolerance of several subjects.  相似文献   

10.
With the aid of mathematical and spectral analysis of the heart rate (HR) wave structure in a dynamic interval tachogram (TG) in elderly subjects, it has been shown that a stable sinus rhythm is typical of the majority of the indigenous population of the rural areas of the North aged 78–97 years and migrants living in the city of Vorkuta aged 60–88 years. The total RR-interval spectrum power (800 ± 98 ms2) in the TGs of the native population is shifted to the very low frequency band (VLF, 52%), which indicates predomination of the humoral-metabolic HR regulation level. The reaction to orthostatic load in elderly subjects is characterized by a significant increase in the total spectrum power, which indicates changes in the autonomic balance of regulation of the wave structure of the HR variability. A low total spectrum power (609 ± 104 ms2) with a predominance of low frequency (LF) waves in the TGs of the migrants at rest reflects the activity of the sympathetic component of HR regulation. The reduction of the parasympathetic regulation and the growth of the sympathetic activity during an active orthostatic test in the migrants is a predictor of cardiovascular diseases. In individual TGs of recipients with HR disorders, the orthostatic test (the redistribution of blood flow in the main vessels) results in a decrease in the number of extrasystoles due to the specific features of the baroreflex regulation mechanisms of the cardiovascular system. The HR variability has been shown to be an indicator of the functional capacity of the cardiovascular system in elderly subjects.  相似文献   

11.
Change of heart rate variability in orthostatic test and immunologic parameters in healthy persons depend from their anxiety. Anxious persons were characterized by increase of sympathetic nervous activity at baseline and in orthostatic test, stimulation of immunologic parameters. In persons with high trait anxiety and not high state anxiety immunosuppression and failing of sympathetic nervous activity were found. In unanxious persons prevalence of parasympathetic nervous activity in heart rate regulation and intermediate immunologic parameters were revealed.  相似文献   

12.
The sympathoneural and the adrenomedullary systems are involved in regulation of immune processes. Their impairment has been suggested in patients with rheumatoid arthritis (RA). In this study, sympathetic response to orthostasis was evaluated in 22 RA females with <40 years of age and in 15 matched healthy controls. The testing consisted of stabilization period in supine position, legs-up position, 10 min of orthostasis and again supine position. In each of the body position blood samples were drawn, blood pressure and electrocardiogram was recorded. Plasma levels of epinephrine (EPI) and norepinephrine (NE) were measured and sympathoneural activity was evaluated by analysis of heart rate variability (HRV). During the testing, RA patients had similar EPI and NE concentrations compared to controls. Baseline diastolic blood pressure tended to be higher in RA patients compared to controls; however, blood pressure response to orthostasis was comparable between the groups. The RA and control groups did not differ in heart rate and HRV parameters. This study showed normal reactivity of the sympathoneural and the adrenomedullary systems during orthostatic challenge in RA patients younger than 40 years.  相似文献   

13.
Physiological changes accompanying syncopes of neural origin (SNO) in patients with psychovegetative syndrome are still insufficiently studied. The data concerning the role of the autonomic nervous system are discrepant. Heart rate variability was analyzed in 68 patients with SNO in a supine position and during the active 20-min orthostatic test taking into account the heart rate components of very low frequency (VLF, an index of cerebral sympathetic activity) and high frequency (HF, a marker of vagal modulation). Steady growth of the VLF and progressive decrease in the LF within 15-20 min of the orthostasis were observed in all the patients (n = 33), who fainted after this period. The predominance of the VLF in the heart rate power spectra was correlated with a high level of anxiety. It is suggested that this fact indicates the stable cerebral sympathetic activation resulting in a baroreceptor dysfunction, i.e., a failure of vasomotor regulation in patients with SNO.  相似文献   

14.
Sympathetic activation during orthostatic stress is accompanied by a marked increase in low-frequency (LF, approximately 0.1-Hz) oscillation of sympathetic nerve activity (SNA) when arterial pressure (AP) is well maintained. However, LF oscillation of SNA during development of orthostatic neurally mediated syncope remains unknown. Ten healthy subjects who developed head-up tilt (HUT)-induced syncope and 10 age-matched nonsyncopal controls were studied. Nonstationary time-dependent changes in calf muscle SNA (MSNA, microneurography), R-R interval, and AP (finger photoplethysmography) variability during a 15-min 60 degrees HUT test were assessed using complex demodulation. In both groups, HUT during the first 5 min increased heart rate, magnitude of MSNA, LF and respiratory high-frequency (HF) amplitudes of MSNA variability, and LF and HF amplitudes of AP variability but decreased HF amplitude of R-R interval variability (index of cardiac vagal nerve activity). In the nonsyncopal group, these changes were sustained throughout HUT. In the syncopal group, systolic AP decreased from 100 to 60 s before onset of syncope; LF amplitude of MSNA variability decreased, whereas magnitude of MSNA and LF amplitude of AP variability remained elevated. From 60 s before onset of syncope, MSNA and heart rate decreased, index of cardiac vagal nerve activity increased, and AP further decreased to the level at syncope. LF oscillation of MSNA variability decreased during development of orthostatic neurally mediated syncope, preceding sympathetic withdrawal, bradycardia, and severe hypotension, to the level at syncope.  相似文献   

15.
Changes in blood circulation, heart electrical activity, and the function of the brain cortex have been studied in healthy subjects of six age groups (from 7 to 65 years of age) during local static exercise. It has been shown that systemic responses of the body, such as a decrease in the contractility of muscles, changes in the heart function due to enhancement of central sympathetic regulation, and changes in the type of brain bioelectrical activity recorded with the use of encephalography, develop during fatigue.  相似文献   

16.
Changes in cardiac rhythm of rats in dehydration   总被引:1,自引:0,他引:1  
80 mongrel rats were studied for peculiarities of the heart activity regulation in dehydration, conditions of the vegetative homeostasis being different. Data of the variation pulsometry were used. A sympathetic shift of the vegetative homeostasis was a common dehydration-caused response. The shift was significant in rats with an initial equilibrium of the vegetative homeostasis and prevailing parasympathetic effects. The survival rate of this group of rats was high. In the group of rats with the initial prevalence of a sympathetic tonus a short-term sympathetic shift was replaced by an increase of parasympathetic effects. The survival rate of this group was much lower. Therefore, rats with initial prevalence of the sympathetic compartment tonus of the vegetative nervous system are more labile to the effect of the dehydration stress.  相似文献   

17.

Chronic orthostatic intolerance (COI) is defined by changes in heart rate (HR), blood pressure (BP), respiration, symptoms of cerebral hypoperfusion and sympathetic overactivation. Postural tachycardia syndrome (POTS) is the most common form of COI in young adults and is defined by an orthostatic increase in heart rate (HR) of?≥?30 bpm in the absence of orthostatic hypotension. However, some patients referred for evaluation of COI symptoms do not meet the orthostatic HR response criterion of POTS despite debilitating symptoms. Such patients are ill defined, posing diagnostic and therapeutic challenges. This study explored the relationship among cardiovascular autonomic control, the orthostatic HR response, EtCO2 and the severity of orthostatic symptoms and fatigue in patients referred for evaluation of COI. Patients (N?=?108) performed standardized testing protocol of the Autonomic Reflex Screen and completed the Composite Autonomic Symptom Score (COMPASS-31) and the Fatigue Severity Scale (FSS). Greater severity of COI was associated with younger age, larger phase IV amplitude in the Valsalva maneuver and lower adrenal baroreflex sensitivity. Greater fatigue severity was associated with a larger reduction in ETCO2 during 10 min of head-up tilt (HUT) and reduced low-frequency (LF) power of heart rate variability. This study suggests that hemodynamic changes associated with the baroreflex response and changes in EtCO2 show a stronger association with the severity of orthostatic symptoms and fatigue than the overall orthostatic HR response in patients with COI.

  相似文献   

18.
The mechanism(s) for post-bed rest (BR) orthostatic intolerance is equivocal. The vestibulosympathetic reflex contributes to postural blood pressure regulation. It was hypothesized that muscle sympathetic nerve responses to otolith stimulation would be attenuated by prolonged head-down BR. Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and peripheral vascular conductance were measured during head-down rotation (HDR; otolith organ stimulation) in the prone posture before and after short-duration (24 h; n = 22) and prolonged (36 ± 1 day; n = 8) BR. Head-up tilt at 80° was performed to assess orthostatic tolerance. After short-duration BR, MSNA responses to HDR were preserved (Δ5 ± 1 bursts/min, Δ53 ± 13% burst frequency, Δ65 ± 13% total activity; P < 0.001). After prolonged BR, MSNA responses to HDR were attenuated ~50%. MSNA increased by Δ8 ± 2 vs. Δ3 ± 2 bursts/min and Δ83 ± 12 vs. Δ34 ± 22% total activity during HDR before and after prolonged BR, respectively. Moreover, these results were observed in three subjects tested again after 75 ± 1 days of BR. This reduction in MSNA responses to otolith organ stimulation at 5 wk occurred with reductions in head-up tilt duration. These results indicate that prolonged BR (~5 wk) unlike short-term BR (24 h) attenuates the vestibulosympathetic reflex and possibly contributes to orthostatic intolerance following BR in humans. These results suggest a novel mechanism in the development of orthostatic intolerance in humans.  相似文献   

19.
Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subjects during both normothermic and skin surface cooling conditions, while baroreflex control of MSNA and heart rate were assessed during rapid pharmacologically induced changes in arterial blood pressure. Skin surface cooling decreased mean skin temperature (34.9 +/- 0.2 to 29.8 +/- 0.6 degrees C; P < 0.001) and increased mean arterial blood pressure (85 +/- 2 to 93 +/- 3 mmHg; P < 0.001) without changing MSNA (P = 0.47) or heart rate (P = 0.21). The slope of the relationship between MSNA and diastolic blood pressure during skin surface cooling (-3.54 +/- 0.29 units.beat(-1).mmHg(-1)) was not significantly different from normothermic conditions (-2.94 +/- 0.21 units.beat(-1).mmHg(-1); P = 0.19). The slope depicting baroreflex control of heart rate was also not altered by skin surface cooling. However, skin surface cooling shifted the "operating point" of both baroreflex curves to high arterial blood pressures (i.e., rightward shift). Resetting baroreflex curves to higher pressure might contribute to the elevations in orthostatic tolerance associated with skin surface cooling.  相似文献   

20.
Sympathetic outflow increases during head-up tilt (HUT) to stabilize blood pressure in the presence of decreases in venous return and stroke volume (SV). Otherwise, orthostatic hypotension would develop. Gender differences in orthostatic tolerance have been noted but the mechanisms are still uncertain. More recently, Waters et al. reported in a limited sample, greater susceptibility of women to demonstrate orthostatic intolerance following space flight. Therefore, it is important to understand gender differences in reflex blood pressure regulation. Recently, we reported smaller increments in muscle sympathetic nerve activity (MSNA) in healthy women during graded HUT and a non-baroreflex cold pressor test. The purpose of this report is to examine the hypothesis that gender differences in blood pressure control during HUT are related to important variations in MSNA discharge patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号