首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic activation and DNA binding of aflatoxin B1 (AFB1), N-nitrosodimethylamine (DMN) and benzo[a]pyrene (B[a]P) were compared in human, rat and mouse hepatocytes and human pulmonary alveolar macrophages (PAM). The degree of carcinogen activation by hepatocytes and PAM was measured by cell-mediated mutagenesis assays in which co-cultivated Chinese hamster V79 cells were used to monitor mutagenic metabolites. Hepatocytes from human, mouse and rat metabolized DMN and released the active metabolites to induce either ouabain- or 6-thioguanine-resistant mutation. The mutation frequencies mediated by hepatocytes of the 3 animal species were approximately 3-9 mutants/10(5) survivors at a concentration of 0.2 mM DMN. The variations of radioactivity bound to liver cell DNA were relatively small in cultured mouse, rat, and human hepatocytes exposed to 14C label DMN (0.5 mM) and the binding values were in a range of 6-12 X 10(3) pmoles/mg DNA. However, rat hepatocytes were at least 10-fold more effective than either human or mouse hepatocytes in generating mutagenic metabolites of AFB1 and also had a much higher AFB1 metabolite DNA-binding value. The AFB1 DNA-binding levels were 4.1, 12-27 (range), 120 pmoles/mg DNA respectively in mouse, human, and rat liver cells following AFB1 (3.3 microM) exposure for 20 h. Hepatocytes from the 3 animal species were unable to mediate mutation in the presence of 4 microM B[a]P; PAM activated B[a]P and effectively mediated mutation in the co-cultivated V79 cells. In contrast to results with hepatocytes, PAM failed to generate enough mutagenic metabolites of AFB1 (3.3 microM) and the mediation of mutations was seen only at very high concentration of DMN (80 mM). The genotoxic effects of the 3 carcinogens on hepatocytes from different species in vitro were in agreement with the in vivo animal experiments in that mice are relatively resistant to AFB1 carcinogenesis whereas rats are sensitive; B[a]P is not effective as a complete liver carcinogen in adult rat and mouse whereas DMN induces liver cancer.  相似文献   

2.
Previous studies indicate that dietary administration of phenolic antioxidants, 2(3)-tert-butyl-4-hydroxyanisole (BHA) and 3,5-di-tert-butyl-4-hydroxytoluene, inhibits the carcinogenic effect of a number of chemical carcinogens including aflatoxin B1 (AFB1). Induction of hepatic enzymes, such as glutathione S-transferase, UDP-glucuronyltransferase, and epoxide hydrolase, has been shown to be responsible for the reduction of AFB1 cytotoxic and carcinogenic effects. The effect of BHA on AFB1 activation was examined in vitro utilizing isolated rat hepatocytes and liver microsomes. In hepatocytes, the total AFB1 content and bound form of AFB1 were 3.4 and 1.4 pmol/10(6) cells, respectively. In the cell-free microsomal activating system, 2.2 pmol were activated per mg of microsomal protein during 60 min of incubation. BHA (0.1-0.5 mM) inhibited AFB1 activation and binding in both systems in a dose-dependent manner; in hepatocytes, 90% inhibition was observed at 0.5 mM. Analyzing various AFB1 adducts, BHA (0.25 mM)-treated hepatocytes contained a significantly reduced amount of AFB1 macromolecular adducts. The antioxidant neither stimulated nor inhibited the cytosolic glutathione S-transferase and microsomal UDP-glucuronyltransferase activities. Analysis of various hydroxylated (aflatoxins M1 and Q1 (AFM1 and AFQ1] and demethylated (aflatoxin P1 (AFP1] metabolites of AFB1 in both the conjugated and unconjugated form indicated that there was a 30-50% reduction of unconjugated AFP1, AFQ1, and AFM1, whereas AFB1 was increased 3-fold. There was no significant change of conjugated metabolites. The effect of BHA on AFB1 activation in hepatocytes was compared with that of other cytochrome P-450 inhibitors; the ED50 values of SKF 525A, BHA, and metyrapone were 9 microM, 40 microM, and 280 microM, respectively. In the cell-free microsomal system, biotransformation of AFB1 to AFP1, AFM1, and AFQ1 was also inhibited. Kinetic analysis of p-nitroanisole O-demethylase activity of rat liver microsomes demonstrated that BHA inhibited noncompetitively with an apparent Ki of 90 microM. In the absence of enzyme induction, the phenolic antioxidant, BHA, blocks the oxidative biotransformation of AFB1 in isolated hepatocytes.  相似文献   

3.
To investigate the effects of the coexistence of aflatoxin B1 (AFB1) and protein malnutrition in rat liver, weanling rats were fed either normal protein diet (20% protein), low‐protein (PEM) diet (5%), normal protein diet + 40 ppb AFB1, or low‐protein diet + 40 ppb AFB1. After 8 weeks, biomarkers of hepatic functions and oxidative stress, caspase‐3 activity, and tumor suppressor protein 53 (p53) were determined spectrophotometrically. Randomly amplified polymorphic DNA polymerase chain reaction (RAPD‐PCR) was employed to determine genomic alterations among the groups. Coexistence of aflatoxicosis and PEM significantly decreased glutathione, glutathione‐S‐transferase, glutathione peroxidase, and superoxide dismutase, while it increased peroxidase and catalase. RAPD‐PCR showed genomic alterations that were associated with significant increases in p53 level and caspase‐3 activity in rats fed PEM diet + AFB1. In conclusion, the coexistence of aflatoxicosis and protein malnutrition induced oxidative stress with concomitant genomic alterations in the liver of weanling rats.  相似文献   

4.
Male Wistar rats were fed AIN-76 semipurified diet or diet containing 5% ground lyophilized Siamese cassia leaves for 2 weeks before sacrifice. Hepatic S9 fractions were prepared and assayed for the level of cytochrome P450 (P450), the activities of monooxygenase, i.e., aniline hydroxylase (ANH), aminopyrine-N-demethylase (AMD) as well as the capacity to metabolically activate the mutagenicities of aflatoxin B(1) (AFB(1)) and benzo(a)pyrene (B(a)P). In addition, the activities of detoxificating enzymes such as glutathione-S-transferase (GST) and UDP-glucuronyltransferase (UGT) were also measured. It was found that feeding of Siamese cassia leaves significantly reduced the activities of hepatic ANH and AMD as well as the capacity to activate the mutagenicity of AFB(1) towards Salmonella typhimurium TA100, being 31, 73 and 41% of control group, respectively. It also slightly decreased, but not significantly, the capacity to activate the mutagenicity of B(a)P towards S. typhimurium YG1029. On the other hand, however, the activities of both GST and UGT were markedly increased in those animals, being 250 and 220% of control animals. The anticarcinogenic potential of Siamese cassia leaves was also investigated in female Sprague Dawley rats treated with 9,10-dimethyl-1,2-benzanthracene (DMBA). The animals were fed control diet or diet containing ground lyophilized Siamese cassia leaves 2 weeks prior to and 1 week after intragastrically administration of DMBA, and then they were placed on a pellet diet for additional 25 weeks. Interestingly, it was found that feeding of diet containing 2.5 and 4% Siamese cassia leaves resulted in a significant decrease in the multiplicity of mammary gland tumors as well as a slight delay of the onset of tumor development. The incidence of tumors in the group fed 4% Siamese cassia leaves, but not in the 2.5% group, was lowered, although not significantly, than that of control group. The results in the present study therefore demonstrated that Siamese cassia leaves possess phase II enzyme inducing property as well as the ability to reduce some phase I enzyme activities in rat liver. This Thai vegetable also exhibit cancer chemopreventive potential, at least against DMBA-induced mammary gland carcinogenesis which may be partly due to phase II inducing capacity as well as phase I inhibitory activity.  相似文献   

5.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

6.
The influence of beta-myrcene (MC) on sister-chromatid exchanges (SCE) in V79 cells induced by 4 S9 mix-activated indirect mutagens was studied. The mutagens used were cyclophosphamide (CP), benzo[a]pyrene (BP), aflatoxin B1 (AFB) and 9,10-dimethyl-1,2-benz[a]anthracene (DMBA). MC effectively inhibited SCEs induced by CP and AFB in a dose-dependent manner, but it had no effect on SCE induction by BP and DMBA. MC also reduced CP-induced SCE frequencies in a hepatic tumor cell line (HTC). These cells are metabolically competent and activate CP into its biologically active metabolites. Our results support the suggestion that MC modulates the genotoxicity of indirect-acting mutagens by inhibiting certain forms of the cytochrome P-450 enzymes required for activation of premutagens like CP and AFB.  相似文献   

7.
tert.-Butylhydroquinone (TBHQ) has been reported to be genotoxic in some short-term assays but non-genotoxic in others. We have examined cytotoxicity and genotoxicity of TBHQ, a principal metabolite of the phenolic antioxidant 2(3)-tert.-butyl-4-hydroxyanisole (BHA), in an hepatocyte-mediated assay with V79 Chinese hamster lung cells including both sister-chromatid exchange (SCE) and thioguanine-resistance (TGR) endpoints. The ability of BHA and of TBHQ to elicit a genotoxic response in Saccharomyces cerevisiae strain D7 was also investigated. In V79 cytotoxicity tests, TBHQ without hepatocytes produced a 50% reduction in colony formation at 4.2 micrograms/ml and was lethal to 100% of the cells at concentrations above 5 micrograms/ml. At partially cytotoxic dose levels, (0.17-3.4 micrograms/ml of medium), TBHQ sometimes increased significantly the frequency of SCE. TBHQ also produced sporadic statistically significant increases in the mutation frequency at the HGPRTase (TGR) gene locus when tested alone or with activation by rat or hamster hepatocytes. Mitotic gene conversion and reverse mutation were not induced in strain D7 of Saccharomyces cerevisiae by exposure to BHA or to TBHQ for 4 h at concentrations as high as 200 micrograms/ml for BHA or 500 micrograms/ml for TBHQ, either alone or with activation by rat-liver S9. Incubation of the yeast cells with BHA or TBHQ for 24 h in growth medium without activation also did not induce genotoxic activity. The slight and sporadic response to TBHQ in the V79 test system may indicate weak genotoxicity which is sensitive to slight differences in test conditions. The classification and test strategies adopted for compounds such as TBHQ could have important implications for regulatory decisions and for the validation of short-term tests.  相似文献   

8.
Summary Dietary polyunsaturated fat has been shown to stimulate mammary tumorigenesis induced in rats by 7,12-dimethylbenz(a)anthracene (DMBA). Studies were undertaken to investigate the effect of polyunsaturated fat and DMBA on splenic natural killer (NK) activity and prostaglandin E (PGE) synthesis. In a first experiment, splenic NK activity at 33, 55, 75, and 110 days of age was measured in Sprague-Dawley rats fed 0.5% low fat (LF), 5% normal fat (NF), or 20% high fat (HF) corn oil diets from 23 days of age. At 55 days of age, half of the rats from the 75 and 110 day age groups were given 5 mg DMBA. Ten days after the initiation of the diets splenic NK activity against YAC-1 lymphoma was decreased from 50% cytotoxicity in rats fed NF diet to 21% cytotoxicity in rats fed HF diet, but was not affected by LF feeding. No difference in NK activity was observed among the groups at the later time periods. DMBA had no effect on NK activity at 20 or 55 days after its administration. In a second experiment, where DMBA (15 mg/rat) was given to half of the rats at 50 days of age and NF or HF diets were started 3 days later, NK activity was 35% in rats fed NF diet and 21% in rats fed HF diet, 5 days after the diets were started. No difference in NK activity in rats fed either diet was observed at later time periods. DMBA decreased both NK activity and spleen cellularity transiently. In both experiments, PGE synthesis by spleen cells cultured for 18 h was not affected by dietary fat intake, but was slightly increased 3 days after DMBA administration. Results from these experiments suggest that the stimulation of DMBA-induced mammary tumorigenesis by polyunsaturated fat and by DMBA itself may possibly be mediated by a transient decrease in splenic NK cell activity.This work was supported by grants CA-35641, CA-33240, CA-13038 and Core Grant CA-24538 from the National Cancer Institute  相似文献   

9.
Aflatoxin B1 (AFB1) is the most potent of the mycotoxins and is widely observed in nutrition abnormalities. There are some studies suggesting oxidative stress‐induced toxic changes on liver related to AFB1 toxicity. The aim of the present study was to evaluate whether antioxidant caffeic acid phenethyl ester (CAPE) relieves oxidative stress in AFB1‐induced liver injury in rat. Twenty‐four male rats were equally divided into three groups. The first group was used as a control. The second group received three doses of AFB1. The three doses of CAPE were given to constitute the third group with doses of AFB1. After 10 days of experiment, liver and serum samples were taken from all animals. Serum gamma glutamyl transferase (GGT), alkaline phosphatase (ALP), glutathione s‐transferase (GST), nitric oxide (NO) and sulfhydryl values were higher in the AFB1 group than in control, whereas serum GGT, ALP, GST and NO values were decreased by in the AFB1 + CAPE group than in AFB1 group. Liver GST, total oxidant capacity, sulfhydryl, apoptosis index and ischemia‐modified albumin values were higher in the AFB1 group than in control, whereas the GST activity and apoptosis index were lower in the AFB1 + CAPE group than in the AFB1 group. There were histopathological degeneration and apoptosis in hepatocytes of AFB1 group. The findings were totally recovered by CAPE administration. In conclusion, we observed that AFB1 caused oxidative and nitrosative hepatoxicity to hepatocytes in the rat. However, CAPE induced protective effects on the AFB1‐induced hepatoxicity by modulating free radical production, biochemical values and histopathological alterations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The present study was aimed to explore the effect of black pepper (Piper nigrum L.) on tissue lipid peroxidation, enzymic and non-enzymic antioxidants in rats fed a high-fat diet. Thirty male Wistar rats (95-115 g) were divided into 5 groups. They were fed standard pellet diet, high-fat diet (20% coconut oil, 2% cholesterol and 0.125% bile salts), high-fat diet plus black pepper (0.25 g or 0.5 g/kg body weight), high-fat diet plus piperine (0.02 g/kg body weight) for a period of 10 weeks. Significantly elevated levels of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in the liver, heart, kidney, intestine and aorta were observed in rats fed the high fat diet as compared to the control rats. Simultaneous supplementation with black pepper or piperine lowered TBARS and CD levels and maintained SOD, CAT, GPx, GST, and GSH levels to near those of control rats. The data indicate that supplementation with black pepper or the active principle of black pepper, piperine, can reduce high-fat diet induced oxidative stress to the cells.  相似文献   

11.
A common dietary contaminant, aflatoxin B1 (AFB1), has been shown to be a potent mutagen and carcinogen in humans and many animal species. Since the eradication of AFB1 contamination in agricultural products has been rare, the use of natural or synthetic free radical scavengers could be a potential chemopreventive strategy. Boron compounds like borax (BX) and boric acid are the major components of industry and their antioxidant role has recently been reported. In the present report, we evaluated the capability of BX to inhibit the rate of micronucleus (MN) and sister chromatid exchange (SCE) formations induced by AFB1. There were significant increases (P < 0.05) in both SCE and MN frequencies of cultures treated with AFB1 (3.12 ppm) as compared to controls. However, co-application of BX (1, 2 and 5 ppm) and AFB1 resulted in decreases of SCE and MN rates as compared to the group treated with AFB1 alone. Borax gave 30–50 % protection against AFB1 induced SCEs and MNs. In conclusion, the support of borax was especially useful in aflatoxin-toxicated blood tissue. Thus, the risk on target tissues of AFB1 could be reduced and ensured early recovery from its toxicity.  相似文献   

12.
2-(Allylthio)pyrazine (2-AP), a synthetic pyrazine derivative with an allylsulfur moiety, has hepatoprotective effects against toxicants. Effect of 2-AP on hepatic tumorigenesis in association with glutathione S-transferase (GST) induction was examined in rats exposed to aflatoxin B1 (AFB1). Both AFB1-DNA adduct formation in the liver and urinary elimination of 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B1 (AFB1-N7-guanine) adduct were also determined. Male Sprague Dawley rats were treated with 2-AP at the daily oral doses of 10, 25 and 50 mg/kg for 16 consecutive days, during which four repeated doses of AFB1 (1.0 mg/kg) were given to the animals. Rats were then subjected to two-thirds of hepatectomy, followed by administration of phenobarbital (PB). Focal areas of hepatocellular alteration were identified after 44 days and preneoplastic foci expressing the placental form of glutathione S-transferase P (GST-P) were quantified by immunostaining of liver sections. 2-AP reduced the volume of liver occupied by GST-P foci by 65-96%. Under these experimental conditions, 2-AP treatment resulted in significant elevations in GST activity in the liver. Levels of radiolabeled AFB1 covalently bound to hepatic DNA, RNA and proteins were significantly reduced in rats treated with 2-AP for 5 days. 2-AP pretreatment also caused a 45% reduction in the urinary elimination of AFB1-N7-guanine adduct over the 24-h postdosing period. The present findings demonstrated that 2-AP exhibited protective effects against AFB1-induced hepatocarcinogenesis in rats with a marked decrease in the level of AFB1-DNA adduct. Reduction of hepatic DNA adducts might result from elevations of activity of GST, which catalyzes detoxification of the carcinogen.  相似文献   

13.
Hepatocytes isolated from rats fed on a chow diet or a low-protein (8%) diet were used to study the effects of various factors on flux through the branched-chain 2-oxo acid dehydrogenase complex. The activity of this complex was also determined in cell-free extracts of the hepatocytes. Hepatocytes isolated from chow-fed rats had greater flux rates (decarboxylation rates of 3-methyl-2-oxobutanoate and 4-methyl-2-oxopentanoate) than did hepatocytes isolated from rats fed on the low-protein diet. Oxidizable substrates tended to inhibit flux through the branched-chain 2-oxo acid dehydrogenase, but inhibition was greater with hepatocytes isolated from rats fed on the low-protein diet. 2-Chloro-4-methylpentanoate (inhibitor of branched-chain 2-oxo acid dehydrogenase kinase), dichloroacetate (inhibitor of both pyruvate dehydrogenase kinase and branched-chain 2-oxo acid dehydrogenase kinase) and dibutyryl cyclic AMP (inhibitor of glycolysis) were effective stimulators of branched-chain oxo acid decarboxylation with hepatocytes from rats fed on a low-protein diet, but had little effect with hepatocytes from rats fed on chow diet. Activity measurements indicated that the branched-chain 2-oxo acid dehydrogenase complex was mainly (96%) in the active (dephosphorylated) state in hepatocytes from chow-fed rats, but only partially (50%) in the active state in hepatocytes from rats fed on a low-protein diet. Oxidizable substrates markedly decreased the activity state of the enzyme in hepatocytes from rats fed on a low-protein diet, but had much less effect in hepatocytes from chow-fed rats. 2-Chloro-4-methylpentanoate and dichloroacetate increased the activity state of the enzyme in hepatocytes from rats fed on a low-protein diet, but had no effect on the activity state of the enzyme in hepatocytes from chow-fed rats. The results indicate that protein starvation greatly increases the sensitivity of the hepatic branched-chain 2-oxo acid dehydrogenase complex to regulation by covalent modification.  相似文献   

14.
Reduced glutathione (GSH) levels in freeze-clamped livers of rats and mice in which hyperphagia is induced by cafeteria diet are 45% lower than in controls. Freshly isolated hepatocytes from mice fed cafeteria diet show a 45% decrease in GSH concentration and a 54% decrease in oxidized glutathione (GSSG) concentration when compared with controls. The rate of GSH synthesis in isolated hepatocytes from control mice is significantly higher than in those from mice fed cafeteria diet. Oral GSH is effective to prevent the decrease in hepatic GSH levels found in cafeteria fed mice.  相似文献   

15.
Administration of the phenolic antioxidant 2(3)-t-butyl-4-hydroxyanisole (BHA) to mice resulted in a 2-3-fold increase in the liver microsome catalyzed irreversible binding of aflatoxin B1 (AFB1) to calf thymus DNA and up to a 5-fold increase in the ability to induce mutations in Salmonella typhimurium TA98. Maximum induction of AFB1 binding to DNA occurred after 2 days of BHA administration whereas cytosolic glutathione S-transferase was maximally induced (6-fold) only after 10 days of BHA feeding. The induction of a new cytochrome P-450 species was indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and an enhanced sensitivity to inhibition by metyrapone and alpha-naphthoflavone. Addition of control cytosol (containing glutathione S-transferase) + glutathione to control microsomes decreased AFB1 binding to DNA by 26%. However, replacement of control cytosol by BHA cytosol which contained 6 times more glutathione S-transferase only marginally enhanced the inhibition to 38%. These data suggest that BHA may exert its effect in the liver primarily through an alteration of the cytochrome P-450 dependent activation process although an increase in the conjugation of reactive metabolite may play a contributory role.  相似文献   

16.
C C Huang 《Mutation research》1987,187(3):133-140
When the Chinese hamster cell line V79 and the tester strain of Salmonella typhimurium TA100 were treated with the precarcinogens dimethylnitrosamine (DMN) or diethylnitrosamine (DEN) in the presence of S9 mix, a dose-dependent increase of sister-chromatid exchanges (SCE) in V79 cells and His+ revertants in TA100 resulted. DMN was a far more efficient SCE inducer than DEN, while DEN was a more efficient inducer of His+ revertants than DMN. Retinol (Rol) effectively inhibited DMN and DEN induced SCE in V79 cells and His+ revertants in TA100. Concurrent treatment of V79 cells with Rol at various doses and one dose of DMN or DEN in the presence of S9 mix caused a significant reduction of SCE as compared to SCE induced by DMN or DEN without Rol. Rol inhibition of DMN-induced SCE was dose-dependent. Rol was less efficient in inhibiting DEN-induced SCE, and no consistent dose-dependent inhibition was observed. At all doses, Rol significantly inhibited DMN and DEN induced mutation frequencies in TA100. At the highest dose of Rol (40 micrograms/plate), the inhibition of DMN and DEN induced His+ revertants reached about 90% and 60%, respectively. The possibility that Rol exerts its antimutagenic activities by inhibiting certain forms of the cytochrome P-450 isoenzymes required for activation of precarcinogens such as DMN and DEN is discussed.  相似文献   

17.
An experiment was performed to determine the effect of diethyl maleate (DEM), and in vivo depletor of glutathione, on the response of male and female rats to arsenic deprivation. A 2×2×2 factorially arranged experiment used groups of six weanling Sprague-Dawley rats. Dietary variables were arsenic at 0 or 0.5 μg/g and DEM at 0 or 0.25%; the third variable was gender. Animals were fed for 10 wk a casein-ground corn based diet that contained amounts of calcium, phosphorus, and magnesium similar to the AIN-76 diet. DEM supplementation increased blood arsenic in both male and female rats; female rats had the greatest amount of arsenic in whole blood. Although female rats in general had a lower concentration of glutathione in liver, those fed no supplemental DEM, regardless of their arsenic status, had the lowest amounts. Compared to males, female rats had a lower activity of liver glutathione S-transferase (GST). Arsenic deprivation decreased, and DEM supplementation increased liver GST activity in both male and female rats. Lung GST activity was also increased by DEM supplementation in male, but not female, rats. The most striking finding of the study was that compared to males, females had extremely elevated kidney calcium concentrations, and that the elevation was exacerbated by arsenic deprivation. DEM supplementation also exacerbated the accumulation of calcium in the kidney of the female rats. The response of the rat to both DEM and arsenic was, for many variables, dependent on gender. This gender dependence may be explained by the differences in methionine metabolism between male and female rats. Thus, arsenic deprivation apparently can manifest itself differently depending on gender.  相似文献   

18.
In a previous study, we found an increase in the mutant frequency at the Hypoxanthine phosphoribosyl transferase (Hprt) locus in the splenic lymphocytes of Fischer 344 rats acutely exposed to aflatoxin B1 (AFB1). Because an acute exposure may not reflect the exposure pattern of individuals whose diet may contain AFB1-contaminated foodstuffs, we sought to determine if the feeding regimen affected the induction of Hprt mutations in the rat splenic lymphocyte. Thus, Fischer 344 rats were fed either (A) a control diet, (B) various doses of AFB1 for three four-week periods interspersed with two four-week periods of the control diet, or (C) continuously fed 1.6 ppm of AFB1. Not only was a significant increase in the mutant frequency detected in the lymphocytes of rats fed a dose as low as 0. 01 ppm of AFB1, but the increase in the mutant frequency at the end of the 20-week experimental period was consistent with an accumulation of damage induced by AFB1. These results indicate that the rat lymphocyte/Hprt assay is useful for detecting chronic low level exposures. Further, these data suggest that an intermittent, low-level exposure to AFB1 may present a human health risk.  相似文献   

19.
The cytogenetic effects in mice chronically fed the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP) were evaluated by chromosome painting, micronucleated normochromatic erythrocytes (MN NCEs) and sister chromatid exchanges (SCEs). PhIP and numerous other heterocyclic amines have been isolated from cooked foods, and many have been found to be carcinogenic in laboratory rodents. Female C57BL/6N mice were chronically fed a diet containing 0, 100, 250 or 400 ppm of PhIP beginning at 8 weeks of age. Peripheral blood and bone marrow were taken from 5 mice per treatment group at 1, 4 and 6 months from the start of exposure. PhIP was removed from the diet for a final month of the experiment, at which time blood was taken from the remaining animals. Chromosome-specific composite DNA probes for mouse chromosomes 2 and 8 were hybridized to metaphase cells from each tissue. The 1- and 4-month time points showed no statistically significant difference between the control and exposed mice for either tissue in chromosome aberration frequencies. Both MN NCEs and SCEs were analyzed at a single time point during exposure (4 months for MN NCEs and 6 months for SCEs) and again 1 month after removing PhIP from the diet. MN NCEs in the peripheral blood showed a statistically significant dose response, with all values decreasing significantly 1 month after removing PhIP from the diet. SCE frequencies in the peripheral blood showed an approximate doubling compared to control mice, and decreased to control levels 1 month after removing PhIP from the diet. SCE frequencies in the bone marrow of exposed mice showed no difference from the control animals. These results show that chronic ingestion of PhIP by female C57BL/6 mice does not produce persistent cytogenetic damage as visualized by chromosome aberrations, MN NCEs or SCEs.  相似文献   

20.
Domoic acid, a recognized neurotoxin derived from contaminated samples of the blue mussel (Mytilus edulis L.), was analyzed for mutagenicity at 2 loci and for 2 cytogenetic parameters in a hepatocyte-mediated assay with V79 Chinese hamster lung fibroblasts. Genetic end-points measured were: mutation to 6-thioguanine resistance at the HGPRTase locus; mutation to ouabain resistance at the Na+,K+-ATPase locus; sister-chromatid exchange (SCE) and micronucleus frequency (MN). None of these genetic end-points was significantly affected by exposure to domoic acid at dose levels of 27.2 and 54.4 micrograms/ml with or without activation by freshly isolated rat liver hepatocytes. It was concluded that, within the limits of the test system employed, domoic acid was non-genotoxic to V79 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号