首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Algal biomass refineries for sustainable transportation fuels, in particular biodiesel, will benefit from algal strain enhancements to improve biomass and lipid productivity. Specifically, the supply of inorganic carbon to microalgal cultures represents an area of great interest due to the potential for improved growth of microalgae and the possibility for incorporation with CO2 mitigation processes. Combinations of bicarbonate (HCO3?) salt addition and application of CO2 to control pH have shown compelling increases in growth rate and lipid productivity of fresh water algae. Here, focus was placed on the marine organism, Nannochloropsis gaditana, to investigate growth and lipid accumulation under various strategies of enhanced inorganic carbon supply. Three gas application strategies were investigated: continuous sparging of atmospheric air, continuous sparging of 5% CO2 during light hours until nitrogen depletion, and continuous sparging of atmospheric air supplemented with 5% CO2 for pH control between 8.0 and 8.3. These gas sparging schemes were combined with addition of low concentrations (5 mM) of sodium bicarbonate at inoculation and high concentration (50 mM) of sodium bicarbonate amendments just prior to nitrogen depletion. The optimum scenario observed for growth of N. gaditana under these inorganic carbon conditions was controlling pH with 5% CO2 on demand, which increased both growth rate and lipid accumulation. Fatty acid methyl esters were primarily comprised of C16:0 (palmitic) and C16:1 (palmitoleic) aliphatic chains. Additionally, the use of high concentration (50 mM) of bicarbonate amendments further improved lipid content (up to 48.6%) under nitrogen deplete conditions when paired with pH-controlled strategies.  相似文献   

2.
3.
Chlorella vulgaris strain UAM 101 has been isolated from the effluent of a sugar refinery. This alga requires glucose to achieve maximal growth rate even under light saturating conditions. The growth rate of cultures grown on light + CO2 + glucose (3.16 per day) reaches the sum of those grown on light + CO2 (1.95 per day) and on dark + glucose (1.20 per day). Unlike other Chlorella strains, uptake of glucose (about 2 micromoles per milligram dry weight per hour) was induced to the same extent in the light and dark and was not photosensitive. The rate of dark respiration was not affected by light and was strongly stimulated by the presence of glucose (up to about 40% in 4 hours). The rate of photosynthetic O2 evolution was measured as a function of the CO2 concentration. These experiments were conducted with cells which experienced different concentrations of CO2 or glucose during growth. The maximal photosynthetic rate was inhibited severely by growing the cells in the presence of glucose. A rather small difference in the apparent photosynthetic affinity for extracellular inorganic carbon (from 10-30 micromolar) was found between cells grown under low and high CO2. Growth with glucose induced a reduction in the apparent affinity (45 micromolar) even though cells had not been provided with CO2. Experiments performed at different pH values indicate CO2 as the major carbon species taken from the medium by Chlorella vulgaris UAM 101.  相似文献   

4.
The rapid growth of worldwide energy demands has led to mounting concerns about energy shortages and has promoted the development of biofuels, which are susceptible to climate change. To evaluate the effects of future environmental changes such as CO2 enrichment and water stress on the growth and biodiesel production of bioenergy plants, we exposed Jatropha curcas to two levels of CO2 concentration (ambient and elevated) and three watering regimes (well-watered, moderate drought, and severe drought) to study its biomass accumulation and allocation, energy cost-gain properties, and photosynthetic response. Elevated CO2 enhanced biomass accumulation of J. curcas by 31.5, 25.9, and 14.4 % under well-watered, moderate drought, and severe drought treatments, respectively, indicating that the stimulating effect was greater under optimum water conditions than in water-deficit conditions. Drought stress significantly increased the biomass allocation to roots, especially the fine roots. CO2 enrichment also increased the root mass fraction, though not significantly. CO2 enrichment significantly enhanced the photosynthetic rate measured under growth CO2 concentration (A growth) and decreased foliar N content and therefore construction cost irrespective of watering conditions. Under elevated CO2, J. curcas employed a quicker return energy use strategy indicated by the higher photosynthetic energy use efficiency and lower payback time. There was a pronounced downregulation in the light-saturated photosynthetic rate under the common CO2 concentration (P max) under long-term CO2 exposure, due to a decrease in the initial and total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities and partially lower foliar N content. The significant interaction of CO2 enrichment and watering regimes implied that the stimulation of plant growth by CO2 enrichment may be negated by soil drought in the future. Long-term field experiments manipulating multiple factors simultaneously are needed to explore how the ecophysiological traits measured for J. curcas translate into bioenergy production.  相似文献   

5.
Circadian clocks synchronize various physiological, metabolic and developmental processes of organisms with specific phases of recurring changes in their environment (e.g. day and night or seasons). Here, we investigated whether the circadian clock plays a role in regulation of growth and chlorophyll (Chl) accumulation in Nannochloropsis gaditana, an oleaginous marine microalga which is considered as a potential feedstock for biofuels and for which a draft genome sequence has been published. Optical density (OD) of N. gaditana culture was monitored at 680 and 735 nm under 12:12 h or 18:6 h light‐dark (LD) cycles and after switching to continuous illumination in photobioreactors. In parallel, Chl fluorescence was measured to assess the quantum yield of photosystem II. Furthermore, to test if red‐ or blue‐light photoreceptors are involved in clock entrainment in N. gaditana, some of the experiments were conducted by using only red or blue light. Growth and Chl accumulation were confined to light periods in the LD cycles, increasing more strongly in the first half than in the second half of the light periods. After switching to continuous light, rhythmic oscillations continued (especially for OD680) at least in the first 24 h, with a 50% decrease in the capacity to grow and accumulate Chl during the first subjective night. Pronounced free‐running oscillations were induced by blue light, but not by red light. In contrast, the photosystem II quantum yield was determined by light conditions. The results indicate interactions between circadian and light regulation of growth and Chl accumulation in N. gaditana.  相似文献   

6.
Chlamydomonas reinhardtii is a model alga for studying triacylglycerol (TAG) accumulation in the photosynthetic production of biofuel. Previous studies were conducted under photoheterotrophic growth conditions in medium supplemented with acetate and/or ammonium. We wanted to demonstrate TAG accumulation under truly photoautotrophic conditions without reduced elements. We first reidentified all lipid components and fatty acids by mass spectrometry, because the currently used identification knowledge relies on data obtained in the 1980s. Accordingly, various isomers of fatty acids, which are potentially useful in tracing the flow of fatty acids leading to the accumulation of TAG, were detected. In strain CC1010 grown under photoautotrophic conditions, TAG accumulated to about 57.5 mol% of total lipids on a mole fatty acid basis after the transfer to nitrogen-deficient conditions. The content of monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol, and phosphatidylglycerol decreased drastically. The accumulated TAG contained 16:0 as the major acid and 16:4(4,7,10,13), 18:2(9,12), and 18:3(9,12,15), which are typically found in chloroplast lipids. Additionally, 18:1(11) and 18:3(5,9,12), which are specific to extrachloroplast lipids, were also abundant in the accumulated TAG. Photosynthesis and respiration slowed markedly after the shift to nitrogen-deficient conditions. These results suggest that fatty acids for the production of TAG were supplied not only from chloroplast lipids but also from other membranes within the cells, although the possibility of de novo synthesis cannot be excluded. Under nitrogen-replete conditions, supplementation with a high concentration of CO2 promoted TAG production in the cells grown photoautotrophically, opening up the possibility to the continuous production of TAG using CO2 produced by industry.  相似文献   

7.
Suboptimal environmental conditions inside closed culture vessels can be detrimental to in vitro growth and survival of plantlets during the acclimatization process. In this study, the environmental factors that affected Doritaenopsis plantlet growth and the relationship between growth and sugar metabolism were investigated. Cultures were maintained under heterotrophic, photoautotrophic, or photomixotrophic conditions under different light intensities and CO2 concentrations. Photoautotrophic growth of Doritaenopsis hybrid plantlets could be promoted significantly by increasing the light intensity and CO2 concentration in the culture vessel. The concentration of different sugars in the leaves of in vitro-grown plantlets varied with different cultural treatments through a 10-wk culture period. Starch, reducing sugars, and nonreducing sugar contents were higher in plantlets grown under photoautotrophic and photomixotrophic conditions than in heterotrophically grown plantlets. Net photosynthesis rates were also higher in photoautotrophically and photomixotrophically grown plantlets. These results support the hypothesis that pyruvate, produced by the decarboxylation of malate, is required for optimal photoautotrophy under high photosynthetic photon flux density. Growth was greatest in plantlets grown under CO2-enriched photoautotrophic and photomixotrophic conditions with high photosynthetic photon flux density. The physiological status of in vitro-grown Crassulacean acid metabolism (CAM)-type Doritaenopsis showed a transition from C3 to CAM prior to acclimatization.  相似文献   

8.
Nitrogen (N) availability is a critical factor affecting photosynthetic acclimation of C3 plants under elevated atmospheric CO2 concentration ([CO2]e). However, current understanding of N effects on photosynthetic electron transport rate and partitioning, as well as its impact on photosynthesis under [CO2]e, is inadequate. Using controlled environment open-top chambers, wheat (Triticum aestivum L.) was grown at two N levels (0 and 200 mg(N) kg?1 soil) and two atmospheric CO2 concentrations of 400 ([CO2]a) and 760 μmol mol?1([CO2]e) during 2009 and 2010. Under [CO2]e high N availability increased stomatal conductance and transpiration rate, reduced limitations on the activity of triose phosphate isomerase, a Calvin cycle enzyme, and increased the rate of net photosynthesis (P N). Considering photosynthetic electron transport rate and partitioning aspects, we suggest that greater N availability increased P N under [CO2]e due to four following reasons: (1) higher N availability enhanced foliar N and chlorophyll concentrations, and the actual photochemical efficiency of photosystem (PS) II reaction centers under irradiance increased, (2) increase of total electron transport rate and proportion of open PSII reaction centers, (3) enhancement of the electron transport rate of the photochemical and carboxylation processes, and (4) reduced limitations of the Calvin cycle enzymes on the photosynthetic electron transport rate. Consequently, sufficient N improved light energy utilization in wheat flag leaves under [CO2]e, thus benefiting to photosynthetic assimilation.  相似文献   

9.
This study aimed to evaluate under photoautotrophic conditions the effect of CO2-enriched atmosphere (360 or 1,000 μmol CO2 mol?1 air) combined with two substrate types (agar or Florialite®) in vitro on plants of Pfaffia glomerata, an endangered medicinal species with promising applications in phytotherapy and phytomedicine. The effects of the treatments on the growth, stomatal density, Rubisco activity, carbon isotopic discrimination, metabolite accumulation, photosynthetic pigments and ultrastructural characteristics were investigated. After a 35-day cultivation period, the in vitro-growth of P. glomerata nodal segments under the different treatments resulted in plants with substantial differences in relation to their growth, photosynthetic pigments, stomatal density and leaf ultrastructural characteristics. The enrichment with CO2 coupled with a porous substrate increased the growth of P. glomerata. The stomatal density in the abaxial epidermis more than doubled in response to the high CO2 supply in both supporting types, whereas the Rubisco activity and activation state were both unresponsive to the treatments. Regardless of the CO2 supply, the plants grown in agar displayed higher carbon isotope discrimination than their counterparts grown in Florialite®. We propose that the long-term photosynthetic performance was improved using Florialite® as a growth support in combination with a high CO2 supply. No apparent signs of photosynthetic down-regulation could be found under elevated CO2 conditions. The enrichment of in vitro atmospheres with CO2 coupled with a porous substrate offers new possibilities for improving the growth and production on a commercial scale of high morphological and physiological quality Pfaffia plants.  相似文献   

10.
Irradiance continuously fluctuates during the day in the field. The speed of the induction response of photosynthesis in high light affects the cumulative carbon gain of the plant and could impact growth and yield. The photosynthetic induction response and its relationship with the photosynthetic capacity under steady-state conditions (P max) were evaluated in 37 diverse soybean [Glycine max (L.) Merr.] genotypes. The induction response of leaf photosynthesis showed large variation among the soybean genotypes. After 5 min illumination with strong light, genotype NAM23 had the highest leaf photosynthetic rate of 33.8 µmol CO2 m?2 s?1, while genotype NAM12 showed the lowest rate at 4.7 µmol CO2 m?2 s?1. Cumulative CO2 fixation (CCF) during the first 5 min of high light exposure ranged from 5.5 mmol CO2 m?2 for NAM23 to 0.81 mmol CO2 m?2 for NAM12. The difference in the induction response among genotypes was consistent throughout the growth season. However, there was no significant correlation between CCF and P max among genotypes suggesting that different mechanisms regulate P max and the induction response. The observed variation in the induction response was mainly attributed to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation, but soybean lines differing in the induction response did not differ in the leaf content of Rubisco activase α- and β-proteins. Future studies will be focused on identifying molecular determinants of the photosynthetic induction response and determining whether this trait could be an important breeding target to achieve improved growth of soybeans in the field.  相似文献   

11.
Lipid class composition of Dunaliella viridis Teodoresco was analysed using thin layer chromatography coupled with flame ionisation detection (TLC/FID technique). D. viridis was cultured under four different photon fluence rates and in darkness, and under two different conditions of CO2 supply (atmospheric and 1%) with and without nitrogen sufficiency. Nine lipid classes were identified and quantified. Total lipids per cell and acetone-mobile polar lipids decreased with light, while the percentage of sterols and triglycerides increased with increasing irradiance. Total phospholipids increase was related with growth rate while hydrocarbons, wax esters and sterol esters accumulated in darkness. There were almost no changes in total lipids per cell because of nitrogen limitation; however, nitrogen limitation led to higher changes in lipid class composition under 1% CO2 than under atmospheric CO2 levels. The main reserve lipid, triglycerides, accumulated in high amounts under 1% CO2 and nitrogen limitation, increasing from 1% to 22% of total lipids. The ratio sterols/acetone-mobile polar lipids could be an index of the 'light status' independently of nitrogen limitation, while the ratio triglycerides/total phospholipids could indicate any physiological stress uncoupling C and N metabolism and affecting the growth rate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The aim of the present study was to evaluate the effects of forced ventilation and CO2 enrichment (360 or 720 μmol mol?1 CO2) on the in vitro growth and development of Pfaffia glomerata, an endangered medicinal species, under photomixotrophic or photoautotrophic conditions. P. glomerata nodal segments showed substantial differences in growth, relative water content and water loss from leaves, photosynthetic pigments, stomatal density, and leaf anatomical characteristics under these different treatments. CO2 enrichment led to increased photosynthetic pigments and reduced stomatal density of in vitro cultivated P. glomerata. A lack of sucrose in the culture medium increased 20-hydroxyecdysone levels, but the increase in CO2 levels did not further elevate the accumulation of 20-hydroxyecdysone. All growth increased in a CO2-enriched atmosphere. In addition, CO2 enrichment, with or without sucrose, gave a lower relative water loss from leaves. This finding indicates that either a photoautotrophic or photomixotrophic system in a CO2-enriched atmosphere may be suitable for large-scale propagation of this species.  相似文献   

13.
Sexual dimorphisms of dioecious plants are important in controlling and maintaining sex ratios under changing climate environments. Yet, little is known about sex-specific responses to elevated CO2 with soil nitrogen (N) deposition. To investigate sex-related physiological and biochemical responses to elevated CO2 with N deposition, Populus cathayana Rehd. was employed as a model species. The cuttings were subjected to two CO2 regimes (350 and 700???mol?mol?1) with two N levels (0 and 5?g?N?m?2?year?1). Our results showed that elevated CO2 and N deposition separately increased the total number of leaves, leaf area (LA), leaf mass, net photosynthetic rate (P n), light saturated photosynthetic rate (P max), chlorophyll a (Chl a), and chlorophyll a to chlorophyll b ratio (Chl a/b) in both males and females of P. cathayana. However, the effects on LA, leaf mass, P n, P max, Chl a and Chl a/b were weakened under the combined treatment of elevated CO2 and N deposition. Males had higher leaf mass, P n, P max, apparent quantum yield (??), carboxylation efficiency (CE), Chl a, Chl a/b, leaf N, and root carbon to N ratio (C/N) than did females under elevated CO2 with N deposition. In contrast to males, females had significantly higher levels of soluble sugars in leaves and greater starch accumulation in roots and stems under the same condition. The results of the present work imply that P. cathayana females are more responsive and suffer from greater negative effects on growth and photosynthetic capacity than do males when grown under elevated CO2 with soil N deposition.  相似文献   

14.
15.
The time course of adaptation from a high to a low photon flux density was studied in the marine chlorophyte Dunaliella tertiolecta. A one-step transition from 700 to 70 micromole quanta per square meter per second resulted in a reduction of doubling rate from 1.1 to 0.4 per day within 24 hours, followed by a slower accumulation of photosynthetic pigments, light harvesting antenna complexes, Photosystem II reaction centers and structural lipids that constitute the thylakoid membranes. Photoregulated changes in the biochemical composition of the thylakoid proteins and lipids were functionally accompanied by decreases in the minimal photosynthetic quantum requirement and photosynthetic capacity, and an increase in the minimal turnover time for in vivo electron transport from water to CO2. Analysis of de novo synthesis of thylakoid membranes and proteins indicates that a high light to low light transition leads to a transient in carbon metabolism away from lipid biosynthesis toward the synthesis of the light harvesting antenna protein complexes, accompanied by a slower restoration rate of reaction centers and thylakoid membranes. This pattern of sequential synthesis of light harvesting complexes followed by reaction centers and membranes, appears to optimize light harvesting capabilities as cells adapt to low photon flux densities.  相似文献   

16.
The influence of leaf orientation and position within shoots on individual leaf light environments, carbon gain, and susceptibility to photoinhibition was studied in the California chaparral shrub Heteromeles arbutifolia with measurements of gas exchange and chlorophyll fluorescence, and by application of a three-dimensional canopy architecture model. Simulations of light absorption and photosynthesis revealed a complex pattern of leaf light environments and resulting leaf carbon gain within the shoots. Upper, south-facing leaves were potentially the most productive because they intercepted greater daily photon flux density (PFD) than leaves of any other orientation. North-facing leaves intercepted less PFD but of this, more was received on the abaxial surface because of the steep leaf angles. Leaves differed in their response to abaxial versus adaxial illumination depending on their orientation. While most had lower photosynthetic rates when illuminated on their abaxial as compared to adaxial surface, the photosynthetic rates of north-facing leaves were independent of the surface of illumination. Because of the increasing self-shading, there were strong decreases in absorbed PFD and daily carbon gain in the basipetal direction. Leaf nitrogen per unit mass also decreased in the basipetal direction but on a per unit area basis was nearly constant along the shoot. The decrease in leaf N per unit mass was accounted for by an increase in leaf mass per unit area (LMA) rather than by movement of N from older to younger leaves during shoot growth. The increased LMA of older lower leaves may have contributed directly to their lower photosynthetic capacities by increasing the limitations to diffusion of CO2 within the leaf to the sites of carboxylation. There was no evidence for sun/shade acclimation along the shoot. Upper leaves and especially south-facing upper leaves had a potential risk for photoinhibition as demonstrated by the high PFDs received and the diurnal decreases in the fluorescence ratio F v/F m. Predawn F v/F m ratios remained high (>0.8) indicating that when in their normal orientations leaves sustained no photoinhibition. Reorientation of the leaves to horizontal induced a strong sustained decrease in F v/F m and CO2 exchange that slowly recovered over the next 10–15?days. If leaves were also inverted so that the abaxial surface received the increased PFDs, then the reduction in F v/F m and CO2 assimilation was much greater with no evidence for recovery. The heterogeneity of responses was due to a combination of differences between leaves of different orientation, differences between responses on their abaxial versus adaxial surfaces, and differences along the shoot due to leaf age and self-shading effects.  相似文献   

17.
Intact Lemna gibba plants were photoinhibited under anaerobic conditions on illumination with monochromatic light which selectively excited the photosystems. Photoinhibition was less when PS 1 was excited and greatest when mainly PS 2 was excited, which suggests that PS 2 was most damaged by photoinhibition induced in complete absence of O2 and CO2.The illumination of plants with monochromatic light exciting PS 1, at different O2 concentrations (in CO2 deficient conditions), showed that PS 1 photoinhibition was increased at the low O2 concentrations. The damage to PS 1 was more evident at 2% O2 than at the higher O2 concentrations.CO2 as well as O2 at atmospheric concentration, (air), was necessary for complete protection of the plant from photoinhibition when both photosystems were excited either separately or together.Abbreviations I irradiance, photon fluence rate - PCO photosynthetic carbon oxidation cycle - PCR photosynthetic carbon reduction cycle - PS 1 photosystem 1 - PS 2 photosystem 2  相似文献   

18.
H. Liu  Y. Fu  M. Wang  H. Liu 《Photosynthetica》2017,55(1):144-152
Adding green component to growth light had a profound effect on biomass accumulation in lettuce. However, conflicting views on photosynthetic efficiency of green light, which have been reported, might occur due to nonuniform light sources used in previous studies. In an attempt to reveal plausible mechanisms underlying the differential photosynthetic and developmental responses to green light, we established a new way of light treatment modeled according to the principle of gene “knock out”. Lettuce (Lactuca sativa L. var. youmaicai) was grown under two different light spectra, including a wide spectrum of light-emitting diode (LED) light (CK) and a wide spectrum LED light lacking green (480–560 nm) (LG). Total PPFD was approximately 100 µmol(photon) m?2 s?1 for each light source. As compared to lettuce grown under CK, shoot dry mass, photosynthetic pigment contents, total chlorophyll to carotenoids ratio, absorptance of PPFD, and CO2 assimilation showed a remarkable decrease under LG, although specific leaf area did not show significant difference. Furthermore, plants grown under LG showed significantly lower stomatal conductance, intercellular CO2 concentration, and transpiration compared with CK. The plants under CK exhibited significantly higher intrinsic quantum efficiency, respiration rate, saturation irradiance, and obviously lower compensation irradiance. Finally, we showed that the maximum ribulose-1,5-bisphosphate-saturated rate of carboxylation, the maximum rate of electron transport, and rate of triosephosphate utilization were significantly reduced by LG. These results highlighted the influence of green light on photosynthetic responses under the conditions used in this study. Adding green component (480–560 nm) to growth light affected biomass accumulation of lettuce in controllable environments, such as plant factory and Bioregenerative Life Support System.  相似文献   

19.
The red seaweed Hypnea spinella (Gigartinales, Rhodophyta), was cultured at laboratory scale under three different CO2 conditions, non-enriched air (360?ppm CO2) and CO2-enriched air at two final concentrations (750 and 1,600?ppm CO2), in order to evaluate the influence of increased CO2 concentrations on growth, photosynthetic capacity, nitrogen removal efficiency, and chemical cellular composition. Average specific growth rates of H. spinella treated with 750 and 1,600?ppm CO2-enriched air increased by 85.6% and 63.2% compared with non-enriched air cultures. CO2 reduction percentages close to 12% were measured at 750?ppm CO2 with respect to 5% and 7% for cultures treated with air and 1,600?ppm CO2, respectively. Maximum photosynthetic rates were enhanced significantly for high CO2 treatments, showing P max values 1.5-fold higher than that for air-treated cultures. N–NH 4 + consumption rates were also faster for algae growing at 750 and 1,600?ppm CO2 than that for non-enriched air cultures. As a consequence of these experimental conditions, soluble carbohydrates increased and soluble protein contents decreased in algae treated with CO2-enriched air. However, internal C and N contents remained constant at the different CO2 concentrations. No significant differences in data obtained with both elevated CO2 treatments, under the assayed conditions, indicate that H. spinella is saturated at dissolved inorganic carbon concentrations close by twice the actual atmospheric levels. The results show that increased CO2 concentrations might be considered a key factor in order to improve intensively cultured H. spinella production yields and carbon and nitrogen bioremediation efficiencies.  相似文献   

20.
Carbon dioxide concentration (CO2) and light intensity are known to play important roles in plant growth and carbon assimilation. Nevertheless, the underlying physiological mechanisms have not yet been fully explored. Tomato seedlings (Solanum lycopersicum Mill. cv. Jingpeng No. 1) were exposed to two levels of CO2 and three levels of light intensity and the effects on growth, leaf gas exchange and water use efficiency were investigated. Elevated CO2 and increased light intensity promoted growth, dry matter accumulation and pigment concentration and together the seedling health index. Elevated CO2 had no significant effect on leaf nitrogen content but did significantly upregulate Calvin cycle enzyme activity. Increased CO2 and light intensity promoted photosynthesis, both on a leaf-area basis and on a chlorophyll basis. Increased CO2 also increased light-saturated maximum photosynthetic rate, apparent quantum efficiency and carboxylation efficiency and, together with increased light intensity, it raised photosynthetic capacity. However, increased CO2 reduced transpiration and water consumption across different levels of light intensity, thus significantly increasing both leaf-level and plant-level water use efficiency. Among the range of treatments imposed, the combination of increased CO2 (800 µmol CO2 mol−1) and high light intensity (400 µmol m−2 s−1) resulted in optimal growth and carbon assimilation. We conclude that the combination of increased CO2 and increased light intensity worked synergistically to promote growth, photosynthetic capacity and water use efficiency by upregulation of pigment concentration, Calvin cycle enzyme activity, light energy use and CO2 fixation. Increased CO2 also lowered transpiration and hence water usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号