首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five different mesophilic systems were evaluated in this study for the anaerobic treatment of food waste. Systems A and B were one stage methane with unsonicated and sonicated feeds, respectively, while, systems C and D were two-stage hydrogen and methane with unsonicated and sonicated feeds, respectively. System E comprised a novel sonicated biological hydrogen reactor (SBHR) followed by methane reactor. The results showed that sonication inside the reactor in the first stage (system E) showed superior results compared to all other systems. Overall VSS removal efficiencies of 67%, 59%, 51%, 44%, and 36% were achieved in systems E, D, C, B, and A, respectively. Volumetric hydrogen production rates of 4.8, 3.3, and 2.6 L H2/Lreactor d were achieved in the SBHR, CSTR with and without sonicated feed, respectively, while, methane production rates of 1.6, 2.1, 2.3, 2.6, and 3.2 L CH4/Lreactor d were achieved in systems A-E, respectively.  相似文献   

2.
The aeration of the cathode compartment of bioelectrochemical systems (BESs) was recently shown to promote simultaneous nitrification and denitrification (SND). This study investigates the cathodic metabolism under different operating conditions as well as the structural organization of the cathodic biofilm during SND. Results show that a maximal nitrogen removal efficiency of 86.9 ± 0.5%, and a removal rate of 3.39 ± 0.08 mg N L−1 h−1 could be achieved at a dissolved oxygen (DO) level of 5.73 ± 0.03 mg L−1 in the catholyte. The DO levels used in this study are higher than the thresholds previously reported as detrimental for denitrification. Analysis of the cathodic half-cell potential during batch tests suggested the existence of an oxygen gradient within the biofilm while performing SND. FISH analysis corroborated this finding revealing that the structure of the biofilm included an outer layer occupied by putative nitrifying organisms, and an inner layer where putative denitrifying organisms were most dominant. To our best knowledge this is the first time that nitrifying and denitrifying microorganisms are simultaneously observed in a cathodic biofilm.  相似文献   

3.
Sulfidogenic fluidized bed treatment of real acid mine drainage water   总被引:1,自引:0,他引:1  
The treatment of real acid mine drainage water (pH 2.7-4.3) containing sulfate (1.5-3.34 g/L) and various metals was studied in an ethanol-fed sulfate-reducing fluidized bed reactor at 35 °C. The robustness of the process was tested by increasing stepwise sulfate, ethanol and metal loading rates and decreasing feed pH and hydraulic retention time. Highest sulfate reduction rate (4.6 g/L day) was obtained with feed sulfate concentration of 2.5 g/L, COD/sulfate ratio of 0.85 and HRT of 12 h. The corresponding sulfate and COD removal efficiencies were about 90% and 80%, respectively. The alkalinity produced in sulfidogenic ethanol oxidation neutralized the acidic mine water. Highest metal precipitation efficiencies were observed at HRT of 24 h, the percent metal removal being over 99.9% for Al (initial concentration 55 mg/L), Co (9.0 mg/L), Cu (49 mg/L), Fe (435 mg/L), Ni (3.8 mg/L), Pb (7.5 mg/L) and Zn (6.6 mg/L), and 94% for Mn (7.21 mg/L).  相似文献   

4.
A coupled microbial fuel cell (MFC) system comprising of an oxic-biocathode MFC (O-MFC) and an anoxic-biocathode MFC (A-MFC) was implemented for simultaneous removal of carbon and nitrogen from a synthetic wastewater. The chemical oxygen demand (COD) of the influent was mainly reduced at the anodes of the two MFCs; ammonium was oxidized to nitrate in the O-MFC’s cathode, and nitrate was electrochemically denitrified in the A-MFC’s cathode. The coupled MFC system reached power densities of 14 W/m3 net cathodic compartment (NCC) and 7.2 W/m3 NCC for the O-MFC and the A-MFC, respectively. In addition, the MFC system obtained a maximum COD, NH4+-N and TN removal rate of 98.8%, 97.4% and 97.3%, respectively, at an A-MFC external resistance of 5 Ω, a recirculation ratio (recirculated flow to total influent flow) of 2:1, and an influent flow ratio (O-MFC anode flow to A-MFC anode flow) of 1:1.  相似文献   

5.
Miniatured floating macrophyte based ecosystem (FME) designed with Eichornia as the major biota was evaluated for bioelectricity generation and wastewater treatment. Three fuel cell assemblies (non-catalyzed electrodes) embedded in FME were evaluated with domestic sewage and fermented distillery wastewater in continuous mode for 210 days. Fermented distillery effluents from biohydrogen production (dark-fermentation) process exhibited effective power generation with simultaneous waste remediation. Two fuel cell assemblies (A1 and A2) showed effective bioelectricity generation. Increasing the organic load of wastewater showed good correlation with both power generation (A1, 211.14 mA/m2; A2, 224.93 mA/m2) and wastewater treatment (COD removal, 86.67% and VFA removal 72.32%). Combining A1 and A2 assemblies depicted stabilized performance with respect to current and voltage along with significant decrease in ohmic and activation losses. FME also exhibited effective removal of nitrates, colour and turbidity from wastewater. The studied miniatured ecological system facilitates both energy generation and wastewater treatment with a sustainable perspective.  相似文献   

6.
The applicability of anaerobic baffled reactor (ABR) was investigated for the treatment of acidic (pH 4.5–7.0) wastewater containing sulfate (1000–2000 mg/L) and Zn (65–200 mg/L) at 35 °C. The ABR consisted of four equal stages and lactate was supplemented (COD/SO42− = 0.67) as carbon and energy source for sulfate reducing bacteria (SRB). The robustness of the system was studied by decreasing pH and increasing Zn, COD, and sulfate loadings. Sulfate-reduction efficiency quickly increased during the startup period and reached 80% within 45 days. Decreasing feed pH, increasing feed sulfate and Zn concentrations did not adversely affect system performance as sulfate reduction and COD removal efficiencies were within 62–90% and 80–95%, respectively. Although feed pH was steadily decreased from 7.0 to 4.5, effluent pH was always within 6.8–7.5. Over 99% Zn removal was attained throughout the study due to formation of Zn-sulfide precipitate.  相似文献   

7.
Performance of two dual chambered mediator-less microbial fuel cells (MFCs) was evaluated at different sludge loading rate (SLR) and feed pH. Optimum performance in terms of organic matter removal and power production was obtained at the SLR of 0.75 kg COD kg VSS−1 d−1. Maximum power density of 158 mW/m2 and 600 mW/m2 was obtained in MFC-1 (feed pH 6.0) and MFC-2 (feed pH 8.0), respectively. Internal resistance of the cell decreased with increase in SLR. When operated only with biofilm on anode, the maximum power density was 109.5 mW/m2 in MFC-1 and 459 mW/m2 in MFC-2, which was, respectively, 30% and 23.5% less than the value obtained in MFC-1 and MFC-2 at SLR of 0.75 kg COD kg VSS−1 d−1. Maximum volumetric power of 15.51 W/m3 and 36.72 W/m3 was obtained in MFC-1 and MFC-2, respectively, when permanganate was added as catholyte. Higher feed pH (8.0) favoured higher power production.  相似文献   

8.
The performance and temporal variation of four hybrid, intermittent loading, pilot-scale vertical flow constructed wetlands (VFCWs) were tested for treating domestic wastewater of three different C/N ratios (2.5:1, 5:1, and 10:1, respectively). Two hybrid systems each consisted of the two identical VFCWs in-series, with up-up or down-down flow. The other two hybrid systems consisted of the first VFCWs (up or down flow) followed by a second VFCWs (down or up flow, respectively). The effects of combination mode, season, load level, and interactions on nutrient removal were studied in synthetic wastewater in the two-stage VFCW systems. With varying C/N ratios for influent water (from 2.5:1, 5:1 to 10:1) average removal efficiencies for the two-bed two-stage systems were as follows: COD 73-93%, TN 46-87%, TP 75-90%, and TOC 40-66%, respectively. All two-bed hybrid VFCWs were efficient in removing organics and total phosphorus, and reached the highest removal rates when the C/N ratios were 10 and 5, respectively. The hybrid systems for different flow direction beds had significantly higher performance (P < 0.05) during the wetlands operational period. Compared to the four types of hybrid VFCWs, the two-stage combination with different flow directions achieved significantly higher TN and TOC reductions (P < 0.05). The highest total nitrogen (P < 0.05) and total phosphorus reductions in down-up flow VFCWs were observed at C/N 5:1. However, for organic matter and total organic carbon, the highest COD and TOC removal rates occurred when C/N ratios were 5-10 for the down-up flow VFCWs. With appropriate control of combined mechanisms in series, the concentrations of carbon and nitrogen sources in the influent can achieve the optimal effects of nutrient removal.  相似文献   

9.
In this study, a two-compartment continuous flow microbial fuel cell (MFC) reactor was used to compare the efficiencies of cathode oxygenation by air and by hydrogen peroxide. The MFC reactor had neither a proton-selective membrane nor an electron transfer mediator. At startup, the cathodic compartment was continuously aerated and the anodic compartment was fed with a glucose solution. An increase of electrical power generation from 0.008 to 7.2 mW m(-2) of anode surface with a steady-state potential of 215-225 mV was observed within a period of 12 days. The performance of the air-oxygenated MFC reactor progressively declined over time because of biofilm proliferation in the cathodic compartment. Oxygenation of the cathodic compartment using 300 mL d(-1) of 0.3% hydrogen peroxide solution resulted in a power density of up to 22 mW m(-2) (68.2 mA m(-2)) of anode surface at a potential of 340-350 mV. The use of H2O2 for oxygenation was found to improve the long-term stability of the MFC reactor.  相似文献   

10.
Lu M  Wei X 《Bioresource technology》2011,102(3):2555-2562
Laboratory-scale experiments were conducted in order to evaluate the performance of a novel treatment process for oilfield wastewater based on combining chemical oxidation, performed by a zerovalent iron (ZVI), ethylenediamine tetraacetic acid (EDTA) and air process, with biological degradation, carried out in a batch activated sludge reactor. The influence of some operating variables was studied. The results showed that the optimum pretreatment conditions were 150 mg/L EDTA, 20 g/L ZVI, and a 180-min reaction time, respectively. Under these conditions, removal efficiencies for hydrolyzed polyacrylamide (HPAM), total petroleum hydrocarbons (TPH), and chemical oxygen demand (COD) were 66%, 59%, and 45%, respectively. During the subsequent 40 h of bioremediation, the concentrations of HPAM, TPH, and COD were decreased to 10, 2 and 85 mg/L, respectively. At the end of experiments, the total removal efficiencies of HPAM, TPH, and COD were 96%, 97% and 92%, respectively.  相似文献   

11.
Wang W  Han H  Yuan M  Li H  Fang F  Wang K 《Bioresource technology》2011,102(9):5454-5460
A two-continuous mesophilic (37 ± 2 °C) UASB system with step-feed was investigated as an attractive optimization strategy for enhancing COD and total phenols removal of the system and improving aerobic biodegradability of real coal gasification wastewater. Through the step-feed period, the maximum removal efficiencies of COD and total phenols reached 55-60% and 58-63% respectively in the system, at an influent flow distribution ratio of 0.2 and influent COD concentration of 2500 mg/L; the corresponding efficiencies were at low levels of 45-50% and 43-50% respectively at total HRT of 48 h during the single-feed period. The maximum specific methanogenic activity and substrate utilization rate were 592 ± 16 mg COD-CH4/(gVSS d) and 89 ± 12 mg phenol/(gVSS d) during the step-feed operation. After the anaerobic digestion with step-feed, the aerobic effluent COD concentration decreased from 270 ± 9 to 215 ± 10 mg/L. The results suggested that step-feed enhanced the degradation of refractory organics in the second reactor.  相似文献   

12.
Luo Y  Zhang R  Liu G  Li J  Qin B  Li M  Chen S 《Bioresource technology》2011,102(4):3827-3832
In this study, the microbial fuel cell (MFC) was combined with the Fenton-like technology to simultaneously generate electricity and degrade refractory contaminants in both anode and cathode chambers. The maximum power density achieved was 15.9 W/m3 at an initial pH of 3.0 in the MFC. In the anode chamber, approximately 100% of furfural and 96% COD were removed at the end of a cycle. In the cathode chamber, the Fenton-like reaction with FeVO4 as a catalyst enhanced the removal of AO7 and COD. The removal rates of AO7 and COD reached 89% and 81%, respectively. The optimal pH value and FeVO4 dosage toward degrading AO7 were about 3.0 and 0.8 g, respectively. Furthermore, a two-way catalyst mechanism of FeVO4 and the contaminant degradation pathway in the MFC were explored.  相似文献   

13.
The main goal of this research was to investigate how different factors influence membrane fouling. The impact of the different concentrations of activated sludge and the amount of extracellular polymer substances (EPS) were monitored. Two pilot plants with submerged membrane modules (hollow fiber and flat sheet) were operated and the raw wastewater was used.Humic substances were identified as the major components of EPS in the activated sludge (more than 34%) in both pilot plants. As the basic constituent in permeate, humic substances were identified as the most dominant components in the effluent (61%) in both pilot plants. Conversely, proteins were mostly analyzed in permeate and supernatant below the detection limit. The total amount of EPS [mg g−1 (VSS)] was similar for concentrations of activated sludge 6, 10 and 14 g L−1. Carbohydrates were identified as the component of EPS which tends most to clog membranes.  相似文献   

14.
A two-chamber MFC system was operated continuously for more than 500 days to evaluate effects of biofilm and chemical scale formation on the cathode electrode on power generation. A stable power density of 0.57 W/m2 was attained after 200 days operation. However, the power density decreased drastically to 0.2 W/m2 after the cathodic biofilm and chemical scale were removed. As the cathodic biofilm and chemical scale partially accumulated on the cathode, the power density gradually recovered with time. Microbial community structure of the cathodic biofilm was analyzed based on 16S rRNA clone libraries. The clones closely related to Xanthomonadaceae bacterium and Xanthomonas sp. in the Gammaproteobacteria subdivision were most frequently retrieved from the cathodic biofilm. Results of the SEM-EDX analysis revealed that the cation species (Na+ and Ca2+) were main constituents of chemical scale, indicating that these cations diffused from the anode chamber through the Nafion membrane. However, an excess accumulation of the biofilm and chemical scale on the cathode exhibited adverse effects on the power generation due to a decrease in the active cathode surface area and an increase in diffusion resistance for oxygen. Thus, it is important to properly control the formation of chemical scale and biofilm on the cathode during long-term operation.  相似文献   

15.
Removal of pharmaceutical compounds in tropical constructed wetlands   总被引:2,自引:0,他引:2  
The ability of tropical horizontal subsurface constructed wetlands (HSSF CWs) planted with Typha angustifolia to remove four widely used pharmaceutical compounds (carbamazepine, declofenac, ibuprofen and naproxen) at the relatively short hydraulic residence time of 2-4 days was documented. For both ibuprofen and naproxen, pharmaceutical compounds with low Dow values, the planted beds showed significant (p < 0.05) enhancement of removal efficiencies (80% and 91%, respectively, at the 4 day HRT), compared to unplanted beds (60% and 52%, respectively). The presence of plants resulted in the removal of these pharmaceutical compounds from artificial wastewater. The more oxidizing environment in the rhizosphere might have played an important role, but other rhizosphere effects, beside rhizosphere aeration, appeared to be important also. Carbamazepine, considered one of the most recalcitrant pharmaceuticals, and declofenac showed low removal efficiencies in our CW, and this is attributable to their higher hydrophobicity. The fact that the removal of these compounds could be explained by the sorption onto the available organic surfaces, explains why there was no significant difference (p > 0.05) in their removal efficiencies between planted as compared to unplanted beds. No statistical significant differences (p > 0.05) were observed for the removal efficiencies of any of the pharmaceuticals tested for the 2-day HRT as compared to that corresponding to 4-day HRT. The rather efficient removal shown by the wetlands in this study (with HRTs of 2-4 days), indicates that such a CW system may be more practically used (with less land requirements) in tropical regions for removing conventional pollutants and certain pharmaceutical compounds from wastewater effluents.  相似文献   

16.
17.
Li X  Hai FI  Nghiem LD 《Bioresource technology》2011,102(9):5319-5324
Significant adsorption of sulfamethoxazole and carbamazepine to powdered activated carbon (PAC) was confirmed by a series of adsorption tests. In contrast, adsorption of these micropollutants to the sludge was negligible. The removal of these compounds in membrane bioreactor (MBR) was dependent on their hydrophobicity and loading as well as the PAC dosage. Sulfamethoxazole exhibited better removal rate during operation under no or low (0.1 g/L) PAC dosage. When the PAC concentration in MBR was raised to 1.0 g/L, a sustainable and significantly improved performance in the removal of both compounds was observed - the removal efficiencies of sulfamethoxazole and carbamazepine increased to 82 ± 11% and 92 ± 15% from the levels of 64 ± 7%, and negligible removal, respectively. The higher removal efficiency of carbamazepine at high (1.0 g/L) PAC dosage could be attributed to the fact that carbamazepine is relatively more hydrophobic than sulfmethoxazole, which subsequently resulted in its higher adsorption affinity toward PAC.  相似文献   

18.
In the present study, chemically treated Helianthus annuus flowers (SHC) were used to optimize the removal efficiency for Cr(VI) by applying Response Surface Methodological approach. The surface structure of SHC was analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Analysis (EDX). Batch mode experiments were also carried out to assess the adsorption equilibrium in aqueous solution. The adsorption capacity (qe) was found to be 7.2 mg/g. The effect of three parameters, that is pH of the solution (2.0-7.0), initial concentration (10-70 mg/L) and adsorbent dose (0.05-0.5 g/100 mL) was studied for the removal of Cr(VI) by SHC. Box-Behnken model was used as an experimental design. The optimum pH, adsorbent dose and initial Cr(VI) concentration were found to be 2.0, 5.0 g/L and 40 mg/L, respectively. Under these conditions, removal efficiency of Cr(VI) was found to be 90.8%.  相似文献   

19.
Xu N  Zhou S  Yuan Y  Qin H  Zheng Y  Shu C 《Bioresource technology》2011,102(17):7777-7783
A novel bioelectrochemical reactor with anodic biooxidation coupled to cathodic bioelectro-Fenton was developed for the enhanced treatment of highly concentrated organic wastewater. Using swine wastewater as a model, the anode-cathode coupled system was demonstrated to be both efficient and energy-saving. Without any external energy supply to the system, BOD5, COD, NH3-N and TOC in the wastewater could be greatly reduced at both 1.1 g COD L−1 d−1 and 4.6 g COD L−1 d−1 of OLR, with the overall removal rates ranging from 62.2% to 95.7%. Simultaneously, electricity was generated at around 3-8 W m−3 of maximum output power density. Based on electron balance calculation, 60-65% of all the electrons produced from anodic biooxidation were consumed in the cathodic bioelectro-Fenton process. This coupled system has a potential for enhanced treatment of high strength wastewater and provides a new way for efficient utilization of the electron generated from biooxidation of organic matters.  相似文献   

20.
Vegetation coverage is considered to be a key factor controlling nitrogen removal in wetlands. We describe the use of newly designed stainless steel incubation chambers to detect shifts in the in situ nitrate reduction activities associated to areas covered with common reed (Phragmites australis) and cattail (Typha latifolia) in the sediment of a free water surface constructed wetland (FWS-CW). Activities were measured at six different positions and times of the year and were related to physicochemical and hydraulic variables. Mean nitrate + nitrite reduction activities varied from 11.1 to 69.4 mg N/m2/h and showed a high variability within sediment types. Ammonification rates accounted for roughly 10% of the total nitrate reduction and were especially relevant in vegetated areas. Measured activities were highly above total nitrogen removal efficiencies estimated in the three parallel treatment cells of the Empuriabrava FWS-CW, indicating the potentiality of the system. In situ nitrate reduction activities correlated well with physichochemical characteristics such as pH and temperature. Additionally, differences in the total nitrogen removal efficiencies were detected between the three treatment cells and were related to changes in the water retention time. The plant species effect was detected in treatment cells of comparable hydraulic loads in which vegetation belts dominated by Typha latifolia were shown to have greater nitrogen removal efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号