首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake and compartmentation of manganese by maize roots,from solutions containing between 1 µM and 1 mM Mn2+,was monitored in vivo by 31P nuclear magnetic resonance (NMR)spectroscopy. Qualitatively, NMR provided a convenient methodfor observing the effects of pH, anoxia, metabolic inhibitors,and competition with magnesium on the uptake of manganese andthe resultshighlighted the role of the vacuole as a sink forMn2+. Quantitatively, it was established thatroot tissues couldmaintain a low concentration of free Mn2+ in the cytoplasm duringmanganese uptake and that there is a non-equilibrium distributionof Mn2+ between the cytoplasm and the vacuole. Typically exposureto Mn2+ in the range 10–100 µM resulted in a submicromolarpool of Mn2+ in the cytoplasm and a vacuolar pool of 10 µMand it was concluded that the movement of Mn2+ out of the cytoplasmmust be energy consuming. Overall the results draw attentionto the similarity between the subcellular distribution of manganeseand calcium and provide some support for the suggestion thatmanganese, like calcium, might have a control function in normalcells. Key words: Cytoplasm, intracellular compartmentation, manganese, 31P-NMR, vacuole  相似文献   

2.
The uptake of manganese by maize roots was monitored in vivoby 31P nuclear magnetic resonance (NMR) spectroscopy and a quantitativeanalysis was developed on the basis of the line broadening ofthe vacuolar orthophosphate (P1) signal. The line broadening,which was followed indirectly by measuring changes in the reciprocalpeak height of the P1 signalin fully relaxed spectra, was foundto depend on pH and P1 concentration, as well ason the presenceof organic acids, but for P1 concentrations in the millimolarrange the method was sensitive to Mn2+ concentrations as lowas 0·1–1 µM. A linear relation was establishedbetween the reciprocal peak height of the vacuolar P1 signalobserved in vivo and the total manganese content of the tissuedetermined subsequently by atomicabsorption. However, the paramagneticcontribution to the line widthobserved in vivo was much smallerthan expected from measurements on simple solutions and freeze-thawextracts and it was concluded that less than 5% of the manganesetaken up by the root tissue was present in the vacuoles as solubleMn2+. The ability to detect the free pool of divalent manganeseis one of several advantages of the 31P-NMR method relativeto the analogous1H-NMR method based on the interaction betweenmanganese and water; and the non-invasive nature ofthe method,coupled with the potential to distinguish the cytoplasmic andvacuolar manganese fractions, allows the NMR method to complementthe information obtained by atomic absorption. Key words: Cytoplasm, intracellular compartmentation, manganese, 31P-NMR, vacuole  相似文献   

3.
Widespread use of O2 microsensors to measure O2 partial pressure(pO2) in plant tissues has been limited in part because of difficultyof construction and other technical obstacles. By modifyingpublished techniques, an O2 microsensor was constructed thatcombined the advantages of Clark-type microsensors with lesscomplicated construction techniques. The specifications andsome performance characteristics of the microsensor are: tipdiameter 1–5 µm; sensitivity 7.5–25 pA kPa–1;negligible stir-induced current; response time 540 ms. The microsensorcan be used in air or solution, and each sensor can be usedfor several experiments. The sensitivity of the microsensorwas unchanged during measurements over the physiological rangeof pO2 in intact, growing maize (Zea mays L.) primary roots,and was thus unaffected by cellular fluids and turgor pressure.Use of the microsensor to compare pO2 profiles in vermiculite-and solution-grown roots is described. The O2 microsensor couldfind application in studies in which information on tissue pO2is needed, but for which conventional O2 probes are too large. Key words: Oxygen microsensor, Zea mays L., roots, oxygen partial pressure  相似文献   

4.
Lee, H. S. J. and Griffiths, H. 1987. Induction and repressionof CAM in Sedurn relephluni L. in response to photopcnod andwater stress.—J. exp. Bot. 38: 834–841. The introduction and repression of CAM in Sedurn telephiunmL, a temperate succulent, was investigated in watered, progressivelydrouglited and rewatered plants in growth chambers. Measurementswere made of water vapour and CO2 exchange, titratable acidity(TA) and xylem sap tension. Effects of photoperiod were alsostudied. CAM was induced by drought under long or short days,although when watered no CAM activity was expressed. C3-CAM intermediate plants were used for the investigation ofwater supply. Those which had received water and those drought-stressedboth displayed a similar nocturnal increase in TA, with a day-nightmaximum (H+) of 69 µmol g–1 fr. wt. The wateredplants took up CO2 at a maximum rate of 2?2 µmol m–2s–1 only in the light period, while the droughted plantsshowed a maximum nocturnal CO2 uptake rate of 0?69 µmolm–2 s–1. Subsequently, as CAM was repressed, thewatered S. telephiwn displayed little variation in TA, withconstant levels at 42 µmol g–1 fr. wt. (day 10).After 10 d of drought stress, the CAM characteristics of S.telephiurn were aLso affected, with reduced net CO2 uptake andH+. The transition between C3 and CAM in S. telephium can be describedas a progression in terms of the proportion of respiratory CO2which is recycled and refixed at night as malic acid, in comparisonwith net CO2 uptake. Recycling increased from 20% (day 1) to44% (day 10) as a result of the drought stress and was highin both the CAM-C3 stage (no net CO2 uptake at night) and alsoin the drought-stressed CAM stage (reduced net CO2 uptake atnight). The complete C3-CAM transition occurred in less than8 d, and the stages could be characterized by xylem sap tensionmeasurements: CAM = 0?50 MPa C3-CAM = 0?36 MPa C3 = 0?29 MPa. Key words: CAM, Sedum telephium L., recycling  相似文献   

5.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

6.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

7.
Acid phosphatase role in chickpea/maize intercropping   总被引:7,自引:1,他引:6  
Li SM  Li L  Zhang FS  Tang C 《Annals of botany》2004,94(2):297-303
Background and aims Organic P comprises 30–80 %of the total P in most agricultural soils. It has been proventhat chickpea facilitates P uptake from an organic P sourceby intercropped wheat. In this study, acid phosphatase excretedfrom chickpea roots is quantified and the contribution of acidphosphatase to the facilitation of P uptake by intercroppedmaize receiving phytate is examined. • Methods For the first experiment using hydroponics, maize(Zea mays ‘Zhongdan No. 2’) and chickpea (Cicerarietinum ‘Sona’) were grown in either the sameor separate containers, and P was supplied as phytate, KH2PO4at 0·25 mmol P L–1, or not at all. The second experimentinvolved soil culture with three types of root separation betweenthe two species: (1) plastic sheet, (2) nylon mesh, and (3)no barrier. Maize plants were grown in one compartment and chickpeain the other. Phosphorus was supplied as phytate, Ca(H2PO4)2at 50 mg P kg–1, or no P added. • Key results In the hydroponics study, the total P uptakeby intercropped maize supplied with phytate was 2·1-foldgreater than when it was grown as a monoculture. In the soilexperiment, when supplied with phytate, total P uptake by maizewith mesh barrier and without root barrier was 2·2 and1·5 times, respectively, as much as that with solid barrier.In both experiments, roots of both maize and chickpea suppliedwith phytate and no P secreted more acid phosphatase than thosewith KH2PO4 or Ca(H2PO4)2. However, average acid phosphataseactivity of chickpea roots supplied with phytate was 2–3-foldas much as maize. Soil acid phosphatase activity in the rhizosphereof chickpea was also significantly higher than maize regardlessof P sources. • Conclusions Chickpea can mobilize organic P in both hydroponicand soil cultures, leading to an interspecific facilitationin utilization of organic P in maize/chickpea intercropping.  相似文献   

8.
The rate of net photosynthesis (P) of whole plant stands oftomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativusL.) and sweet pepper (Capsicum annuum L.) was measured in sixlong-term experiments in large greenhouses under normal operatingconditions and CO2-concentrations between 200 and 1200 µmolmol-1. The objective was to quantify the responses to lightand carbon dioxide and to obtain data sets for testing simulationmodels. The method of measuring canopy photosynthesis involvedan accurate estimation of the greenhouse CO2 balance, usingnitrous oxide (N2O) as tracer gas to determine, on-line, theexchange rate between greenhouse and outside air. The estimatedrelative error in the observed P was about ± 10%, exceptthat higher relative errors could occur under particular conditions. A regression equation relating P to the photosynthetically activeradiation, the CO2 concentration and the leaf area index explained83-91% of the variance. The main canopy photosynthesis characteristicscalculated with the fitted regression equations were: canopyPmax 5-9 g m-2 h-1 CO2 uptake; ratio Pmax/LAI 1·5-3 gm-2 h-1; light compensation point 32-86 µmol s-1 m-2;light use efficiency (quantum yield) at low light 0·06-0·10µmol µmol-1 and CO2 compensation point 18-54 µmolmol-1. The results were related to the prevailing conditions.Copyright1994, 1999 Academic Press Canopy photosynthesis, Capsicum annuum L., carbon dioxide, CO2, CO2 balance, CO2 use efficiency, cucumber, Cucumis sativus L., glasshouse, greenhouse, light use efficiency, Lycopersicon esculentum Mill., sweet pepper, tomato, tracer gas  相似文献   

9.
Ritchie, R. J. 1987. The permeability of ammonia, methylamineand ethylamine in the charophyte Chara corallina (C. australis).—J.exp. Bot. 38: 67–76 The permeabilities of the amines, ammonia (NH3), methylamine(CH3NH2) and ethylamine (CH3CH2NH2) in the giant-celled charophyteChara corallina (C. australis) R.Br. have been measured andcompared. The permeabilities were corrected for uptake fluxesof the amine cations. Based on net uptake rates, the permeabilityof ammonia was 6?4?0?93 µm s–1 (n = 38). The permeabilitiesof methylamine and ethylamine were measured in net and exchangeflux experiments. The permeabilities of methylamine were notsignificantly different in net and exchange experiments, norto that of ammonia (Pmethylamine = 6?0?0?49 µm s–1(n = 44)). In net flux experiments the apparent permeabilityof ethylamine was slightly greater than that of ammonia andmethylamine (Pethylamine, net = 8?4?1?2 µm s–1 (n= 40)) but the permeability of ethylamine based on exchangeflux data was significantly higher (Pethylamine, exchange =14?1?2 µm s–1 (n = 20)). Methylamine can be validlyused as an ammonium analogue in permeability studies in Chara. The plasmalemma of Chara has acid and alkaline bands; littlediffusion of uncharged amines would occur across the acid bands.The actual permeability of amines across the alkaline bandsis probably about twice the values quoted above on a whole cellbasis i.e. the permeability of ammonia across the permeablepart of the plasmalemma is probably about 12 µm s–1. Key words: Chara, permeability, ammonia, methylamine  相似文献   

10.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

11.
We investigated the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one(DCEBIO) on the Cl secretory response of the mouse jejunum using the Ussing short-circuit current (Isc) technique. DCEBIO stimulated a concentration-dependent, sustained increase in Isc (EC50 41 ± 1 µM). Pretreating tissues with 0.25 µM forskolin reduced the concentration-dependent increase in Isc by DCEBIO and increased the EC50 (53 ± 5 µM). Bumetanide blocked (82 ± 5%) the DCEBIO-stimulated Isc consistent with Cl secretion. DCEBIO was a more potent stimulator of Cl secretion than its parent molecule, 1-ethyl-2-benzimidazolinone. Glibenclamide or NPPB reduced the DCEBIO-stimulated Isc by >80% indicating the participation of CFTR in the DCEBIO-stimulated Isc response. Clotrimazole reduced DCEBIO-stimulated Isc by 67 ± 15%, suggesting the participation of the intermediate conductance Ca2+-activated K+ channel (IKCa) in the DCEBIO-activated Isc response. In the presence of maximum forskolin (10 µM), the DCEBIO response was reduced and biphasic, reaching a peak response of the change in Isc of 43 ± 5 µA/cm2 and then falling to a steady-state response of 17 ± 10 µA/cm2 compared with DCEBIO control tissues (61 ± 6 µA/cm2). The forskolin-stimulated Isc in the presence of DCEBIO was reduced compared with forskolin control tissues. Similar results were observed with DCEBIO and 8-BrcAMP where adenylate cyclase was bypassed. H89, a PKA inhibitor, reduced the DCEBIO-activated Isc, providing evidence that DCEBIO increased Cl secretion via a cAMP/PKA-dependent manner. These data suggest that DCEBIO stimulates Cl secretion of the mouse jejunum and that DCEBIO targets components of the Cl secretory mechanism. 1-ethyl-2-benzimidazolinone; forskolin; glibenclamide; clotrimazole; H89  相似文献   

12.
For a deeper understanding of the germination of chick–pea(Cicer arietinum) seeds, which is dependent upon ethylene synthesis,a crude extract containing authentic ACC oxidase (ACCO) activitywas isolated in soluble form from the embryonic axes of seedsgerminated for 24 h. Under our optimal assay conditions (200mM HEPES at pH 7.0, 4µM FeS04, 6 mM Na–ascorbate,1 mM ACC, 20% 02, 3% CO2 , and 10%glycerol) this enzyme was5–fold more active than under the conditions we used initiallyin the present work. The enzyme has the following Km: 28 µMfor ACC (approximately 4–fold less than in vivo), 1.2%for O2 (in the presence of an optimal CO2 concentration of 3%),and 1% for CO2 in the presence of O2 (20%). The enzyme is inhibitedby phenanthroline (PNT) (specific chelating agent of ferrousion), and competitively inhibited (K1, =0.5 mM) by 2–aminoisobutyricacid (AIB), and the enzymatic activity was not detectable inthe absence of CO2. Under optimal assay conditions, the enzymehas two optimum temperatures (28 C and 35 C) and is inhibitedby divalent metal cations (Zn2+> CO2+>Ni2+>Cu2+>Mn2+>Mg2+) and by salicylic acid, propylgallate, carbonyl cyanidem–chlorophenyl hydrazone (CCCP), dinitrophenol (DNP),and Na–benzoate. The in vitro ACCO activity which we recoveredin soluble form is equivalent to approximately 80–85%of the apparent activity evaluated in vivo. Key words: ACC oxidase, Cicer arietinum, ethylene, germination, seeds  相似文献   

13.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

14.
Whitehead, D. C. and Lockyer, D. R. 1986. The influence of theconcentration of gaseous ammonia on its uptake by the leavesof Italian ryegrass, with and without an adequate supply ofnitrogen to the roots.—J. exp. Bot. 38: 818–827. Plants of Italian ryegrass (Lolium multiflorum Lam.) were grownin pots of soil with two rates of 15N-labclled nitrate, oneproviding adequate, and the other less than adequate, N formaximum growth. After 25 d in a controlled environment cabinet,the plants were transferred to chambers and exposed for 33 dto NH3in the air at one of nine concentrations ranging from14 to 709 µg NH3 m–3. Increasing the concentrationof NH3 in the air increased the dry weight of the shoots ofplants grown at the lower but not the higher rate of nitrate.The content of total N in the plant shoots (% dry weight) waslinearly related to NH3 concentration; at 709 µg NH3 andin both sets of plants it was more than double the content at14 µg NH3 m–3. Calculations, based on 15N enrichment,indicated that the amount of N taken up from the NH3 per unitleaf area increased linearly with increasing concentration ofNH3 in the air uptake (µg dm–2 h–1) = 0.1009xat the lower rate of nitrate and 0-0829x at the higher rateof nitrate, where x is the concentration of NH3 in the air expressedas µg NH3m–3. The proportion of the total plant N that was derived from theNH3 ranged from 4?0% at a concentration of 14 µg NH3 m–3with the higher rate of nitrate addition to 77?5% at a concentrationof 709 µg m–3 with the lower rate of nitrate addition.The proportions of the total N in the water-insoluble proteinof the leaf tissue that were derived from nitrate and gaseousNH3 were similar to the proportions in the whole leaf material. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

15.
We examined the effect of pretreatments (18 h at 5 µmoldm–3) with abscisic acid, the ethylene-releasing substance‘Ethephon’, gibberellic acid, indoleacetic acid,kinetin and zeatin on nitrate uptake and in vivo nitrate reductaseactivity (NRA) in roots of nitrogen-depleted Phaseolus vulgarisL. Nitrate uptake showed an apparent induction pattern witha steady state after about 6 h, in all treatments. The nitrateuptake rate after 6 h was unaffected or at most 30% lower aftertreatments with the plant growth regulators. Gibberellic acid, kinetin and zeatin induced substantial NRAin roots in the absence of nitrate, whereas Ethephon enhancedNRA only during nitrate nutrition. Kinetin-induced NRA (Ki-NRA)was maximal after a pretreatment at 1 µmol dm–3,and showed a lag phase of 6–8 h. Ki-NRA was additive tonitrate-induced NRA (NO3-NRA) for at least 24 h, independentof the induction sequence. After full induction, Ki-NRA approximated20% of NO-3-NRA. Abscisic acid counteracted the developmentof Ki-NRA, but not of NO3-NRA. Cycloheximide and tungstatewere equally effective to suppress the development of nitratereductase activity after supply of kinetin or NO3. Our data are consistent with the operation of two independentenzyme fractions (Ki-NRA and NO3-NRA) with apparentlyidentical properties but with separate control mechanisms. Theabsence of major effects of plant growth regulators on the time-courseand rate of nitrate uptake suggests that exogenous regulators,and possibly endogenous phytohormones are of minor importancefor initial nitrate uptake. The differential effect of someregulators on nitrate uptake and root NRA furthermore indicatesthat the processes of uptake and reduction of NO3 arenot obligatory or exclusively coupled to each other.  相似文献   

16.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

17.
A study has been made of photosynthetic 14CO2 fixation by isolated‘mature’ internodes of Nitella translucens. Experimentalconditions were similar to those used in studies of the ionicrelations of these cells. Maximum rates of photosynthesis were33–40µµmoles CO2, fixed per cm2 of surfacearea per second (equivalent to 12–15 /xmoles fixed permg chlorophyll per hour). l4CO2 fixation was inhibited to thedark level by 3(3,4,dichlorophenyl)-1, 1-dimethylurea (at 0-6µM or 10µM) and by the uncoupler carbonyl cyanide-m-chlorophenylhydrazone(SµM). The presence of imidazole or ammonium sulphate(both of which uncouple ATP production in vitro) did not resultin an inhibition of 14CO2 fixation. These results are discussedin relation to published work on solute uptake by Nitella translucens.During photosynthesis there was rapid movement of 14C-labelledorganic compounds out of the chloroplasts. 14C-labelled sucrose,ammo-acids, and sugar phosphates were found in samples of vacuolarsap.  相似文献   

18.
Gibberellin 3/ß-hydroxylase,a 2-oxoglutarate-dependentdioxygenase that catalyzes the hydroxylation of GA20 to GA1,was purified 313-fold from immature seeds of Phaseolus vulgarisL. The mol wt of the enzyme was estimated to be 42,000 by gelfiltration HPLC and SDS-polyacrylamide gel electrophoresis.The enzyme exhibited maximum activity at pH 7.7. The Km valuesfor [2,3-3H]GA20 and [2,3-3H]GA, were 0.29µu and 0.33µm, respectively. The enzyme requires 2-oxoglutarate asa cosubstrate; the Km value for 2-oxoglutarate was 250µMusing [3H]- GA20 as a substrate. Fe2+ and ascorbate significantlyactivated the enzyme at all purification steps, while catalaseand BSA activated the purified enzyme only. The enzyme was inhibitedby divalent cations Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+.3ß-Hydroxylation of [3H]- GA20 was also inhibitedby non-radioactive GA5, GA9,GA15, GA20 and GA44. The possiblesite of 3ß-hydroxylation in gibberellin biosynthesisis discussed in terms of the substrate specificity of partiallypurified gibberellin 3ß-hydroxylase. (Received February 29, 1988; Accepted June 3, 1988)  相似文献   

19.
EGLEY  G. H. 《Annals of botany》1984,53(6):833-840
Ethylene (10 µ1–1) caused about one-third of highlydark-dormant seeds of common purslane (Portulaca oleracea L.)to germinate in the dark. Attempts were made to increase germinationin the dark with nitrate and ethylene combinations. When applieddirectly to the seeds, KNO3 did not stimulate germination andKNO3 plus ethylene did not increase germination above that ofethylene alone. Pre-incubation of seeds in KNO3 for 4 to 7 dbefore the ethylene applications significantly increased germination.The effects of the KNO3 pre-incubation were additive at eachof four ethylene concentrations (0.1–100 µ11–1).Potassium nitrate was effective only when ethylene followedthe KNO3 pre-incubation period. Potassium nitrite stimulatedabout 25 per cent of the seeds to germinate without a pre-incubationperiod and without ethylene. Also, ethylene plus KNO2 enhancedgermination above that achieved by either stimulus alone. Silvernitrate did not block the ethylene promotion of germination,but reversed the typical ethylene inhibition of seedling growthfollowing germination. The results support the views that nitrateexerted its effect via conversion to nitrite within the seedand that the rate of nitrate conversion may be a limiting factorin the dark germination of common purslane seeds. Ethylene mayfacilitate nitrite activity by increasing seed sensitivity tothe stimulus. Common purslane, Portulaca oleracea L., ethylene, nitrate, nitrite, germination, dormancy  相似文献   

20.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号