首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies using [3H]androstenedione (A) demonstrated that this substrate can be aromatized to estrone (E1) in homogenates of breast carcinoma tissue and breast adipose tissue, in breast carcinoma and breast adipose stromal cells in culture, and in cultured adipose stromal cells from sites remote from the tumor. Using cultured breast carcinoma cells, it was shown that estrogen formation was stimulated by Cortisol (10−6 M) and inhibited by endogenous 5-reduced androgens: 5-androstene-dione>androsterone>dihydrotestosterone>epiandrosterone>3- and 3β-androstanediol. It was also shown that 19-nortestosterone and 19-norandrostenedione (10−6 M) inhibited E1 formation by 80%. Progesterone (10−6 M) had no effect on aromatase activity, while the progestational agent R5020 (10−6 M) caused a 70% inhibition. These studies emphasize that a variety of compounds can influence aromatase activity and that drugs which are used as aromatase inhibitors in patients with breast carcinoma may have multiple sites of action.  相似文献   

2.
Estrogen plays a major role in breast cancer development and progression. Breast tissue and cell lines contain the necessary enzymes for estrogen synthesis, including aromatase and 17β-hydroxysteroid dehydrogenase (17β-HSD). These enzymes can influence tissue exposure to estrogen and therefore have become targets for breast cancer treatment and prevention. This study determined whether the isoflavone genistein (GEN) and the mammalian lignans enterolactone (EL) and enterodiol (ED) would inhibit the activity of aromatase and 17β-HSD type 1 in MCF-7 cancer cells, thereby decreasing the amount of estradiol (E2) produced and consequently cell proliferation. Results showed that 10 μM EL, ED and GEN significantly decreased the amount of estrone (E1) produced via the aromatase pathway by 37%, 81% and 70%, respectively. Regarding 17β-HSD type 1, 50 μM EL and GEN maximally inhibited E2 production by 84% and 59%, respectively. The reduction in E1 and E2 production by EL and the reduction in E2 production by GEN were significantly related to a reduction in MCF-7 cell proliferation. 4-Hydroxyandrostene-3,17-dione (50 μM) did not inhibit aromatase but inhibited the conversion of E1 to E2 by 78%, suggesting that it is a 17β-HSD type 1 inhibitor. In conclusion, modulation of local E2 synthesis is one potential mechanism through which ED, EL and GEN may protect against breast cancer.  相似文献   

3.
Estradiol (E(2)) is an important risk factor in the development and progression of breast cancer. However, a "direct effect" of E(2) in breast cancerization has not yet been demonstrated. The estrogen receptor complex can mediate the activation of oncogens, proto-oncogens, nuclear proteins and other target genes that can be involved in the transformation of normal to cancerous cells. Breast cancer cells possess all the enzymes (sulfatase, aromatase, 17beta-hydroxysteroid dehydrogenase (17beta-HSD)) necessary for the local bioformation of E(2). In the last years, many studies have shown that treatment of breast cancer patients using anti-aromatase agents has beneficial therapeutic effects. The aromatase activity is very low in most breast cancer cells but was significantly increased in a hormone-dependent breast cancer cell line: the MCF-7aro, using the aromatase cDNA transfection and G-418 (neomycin) selection. In the present study, we explore the effect of E(2) on the aromatase activity of this cell line. The MCF-7aro cell line was a gift from Dr. S. Chen (Beckman Research Institute, Duarte, U.S.A.). For experiments the cells were stripped of endogenous steroids and incubated with physiological concentrations of [(3)H]-testosterone (5 x 10(-9)mol/l) alone or in the presence of E(2) (5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol/l) for 24h at 37 degrees C. The cellular radioactivity uptake was determined in the ethanolic supernatant and the DNA content in the remaining pellet. [(3)H]-E(2), [(3)H]-estrone ([(3)H]-E(1)) and [(3)H]-testosterone were characterized by thin layer chromatography and quantified using the corresponding standard. It was observed that [(3)H]-testosterone is converted mainly into [(3)H]-E(2) and not to E(1), which suggests very low or absence of oxidative 17beta-HSD (type 2) activity in these experimental conditions. The aromatase activity, corresponding to the conversion of [(3)H]-testosterone to [(3)H]-E(2) after 24h, is relatively high, since the concentration of E(2) was 2.74+/-0.11pmol/mg DNA in the non-treated cells. E(2) inhibits this conversion by 77, 57 and 21%, respectively, at the concentrations of 5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol. In previous studies, it was demonstrated that E(2) exerts a potent anti-sulfatase activity in the MCF-7 and T-47D breast cancer cells. The present data show that E(2) can also block the aromatase activity. The dual inhibition of the aromatase and sulfatase activities, two crucial enzymes for the biosynthesis of E(2) by E(2) itself in breast cancer add interesting and attractive information for the use of estrogen therapeutic treatments.  相似文献   

4.
In an earlier study, estrogen production was much lower in Leydig cells from the abdominal than from the scrotal testis in naturally occurring unilateral cryptorchidism in the boar. A more direct assessment of aromatase activity was made in thirty-two mature male pigs to examine this observation further, using nonradioactive androstenedione (delta 4A 1.0 x 10(-6) M - 1.5 x 10(-5) M) and [1 beta, 2 beta-3H] delta 4A as substrates. Purified Leydig cells were prepared from normal boars and from unilaterally and bilaterally cryptorchid animals. Combined estrone sulfate (E1S) and estrone (E1) formation from delta 4A were measured by radioimmunoassay. Little or no estrogen secretion was seen with cells from the abdominal testis in unilaterally cryptorchid boars (n = 7), and E1S formation from delta 4A was 6- to 14-fold higher for scrotal cells (n = 6). Aromatase activity as reflected in percent conversion of substrate to [3H]-labeled water was clearly lower in cells from the abdominal testis (1.10 +/- 0.08 and 11.22 +/- 0.7%, respectively, p less than 0.01, n = 6). No marked reduction was noted for unilaterally cryptorchid boars with an inguinally located testis (10.18 +/- 0.27 and 13.09 +/- 0.58% for inguinal and scrotal testes, respectively, n = 3). Concentrations of E1S in testicular arterial and venous blood (n = 9) gave additional evidence of lower estrogen production by the undescended testis of the cryptorchid boar. It was concluded that lower aromatase activity is present in Leydig cells of the abdominal testis.  相似文献   

5.
In situ estrogen synthesis is implicated in tumor cell proliferation through autocrine or paracrine mechanisms especially in postmenopausal women. Several recent studies demonstrated activity of aromatase, an enzyme that plays a critical role in estrogen synthesis in breast tumors. Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1/MNAR) is an estrogen receptor (ER) coregulator, and its expression is deregulated in breast tumors. In this study, we examined whether PELP1 promotes tumor growth by promoting local estrogen synthesis using breast cancer cells (MCF7) that stably overexpress PELP1. Immunohistochemistry revealed increased aromatase expression in MCF7-PELP1-induced xenograft tumors. Real-time PCR analysis showed enhanced activation of the aromatase promoter in MCF7-PELP1 clones compared with MCF7 cells. Using a tritiated-water release assay, we demonstrated that MCF7-PELP1 clones exhibit increased aromatase activity compared with control MCF-7 cells. PELP1 deregulation uniquely up-regulated aromatase expression via activation of aromatase promoter I.3/II, and growth factor signaling enhanced PELP1 activation of aromatase. PELP1-mediated induction of aromatase requires functional Src and phosphatidylinositol-3-kinase pathways. Mechanistic studies revealed that PELP1 interactions with ER-related receptor-alpha and proline-rich nuclear receptor coregulatory protein 2 lead to activation of aromatase. Immunohistochemistry analysis of breast tumor array showed increased expression of aromatase in ductal carcinoma in situ and node-positive tumors compared with no or weak expression in normal breast tissue. Fifty-four percent (n = 79) of PELP1-overexpressing tumors also overexpressed aromatase compared with 36% (n = 47) in PELP1 low-expressing tumors. Our results suggest that PELP1 regulation of aromatase represents a novel mechanism for in situ estrogen synthesis leading to tumor proliferation by autocrine loop and open a new avenue for ablating local aromatase activity in breast tumors.  相似文献   

6.
The effects of 4-hydroxy-4-androstene-3,17-dione (4-OH-A) and 10-propargylestr-4-ene-3,17-dione (PED) on the aromatization of androstenedione (A) and the conversion of A to testosterone (T) were studied in incubations with breast carcinoma and breast adipose tissues. Parallel studies were carried out to determine the effects of 4-OH-A and PED on A metabolism in tissue from 5 patients with breast carcinoma. At 11 μM, both compounds fully inhibited aromatization, whereas the conversion of A to T was decreased in only 2 incubations.Studies with varying concentrations of 4-OH-A and PED demonstrated that both compounds inhibited estrone (E1) formation by 80% at a concentration of 0.085 μM, with maximum effect at 0.34 μM. 90% inhibition of estradiol (E2) formation was observed at inhibitor concentrations of 0.17 μM or greater. T formation was slightly affected at 0.67 μM, but was progressively inhibited with increasing 4-OH-A or PED concentrations, reaching 70% at 11 μM.Similar experiments with 4-OH-A in breast adipose tissue homogenates showed that a concentration of 0.1 μM was sufficient to inhibit aromatization while T inhibition required 11 μM.4-OH-A and PED are selective inhibitors of aromatization in human breast tissues and may provide a mechanism for controlling estrogen responsive processes.  相似文献   

7.
To study mechanisms of aromatase inhibition in brain cells, a highly effective non-steroidal aromatase inhibitor (Fadrozole; 4-[5,6,7,8-tetra-hydroimidazo-(1,5-a)-pyridin-5-yl] benzonitrile HCl; CGS 16949A) was compared with endogenous C-19 steroids, known to be formed in the preoptic area, which inhibit oestrogen formation. Using a sensitive in vitro tritiated water assay for aromatase activity in avian (dove) preoptic tissue, the order of potency, with testosterone as substrate was: Fadrozole (Ki < 1 × 10−9 M) > 4-androstenedione 5-androstanedione > 5-dihydrotestosterone (Ki = 6 × 10−8 M) > 5β-androstanedione > 5β-dihydrotestosterone (Ki = 3.5 × 10−7 M) > 5-androstane-3, 17β-diol (Ki = 5 × 10−6 M) > 5β-androstane-3β,17β-diol. Five other steroids, 5β-androstane-3,17β-diol, 5-androstane-3β,17β-diol, progesterone, oestradiol and oestrone, showed no inhibition at 10−4 M. The kinetics indicate that endogenous C-19 steroids show similar competitive inhibition of the aromatase as Fadrozole. Mouse (BALB/c) preoptic aromatase was also inhibited by Fadrozole. We conclude that endogenous C-19 metabolites of testosterone are effective inhibitors of the brain aromatase, and suggest that they bind competitively at the same active site as Fadrozole.  相似文献   

8.
Tibolone (Org OD14) is a synthetic steroid used for post-menopausal hormone replacement therapy (HRT). Since HRT might increase breast cancer risk, it is important to determine the possible effects of tibolone on breast tissues. Tibolone and its metabolites Org 4094, Org 30126 and Org OM38 have been reported to inhibit estrone sulfatase activity in MCF-7 and T47D breast cancer cell lines, which suggest beneficial effects on hormone dependent breast cancer by reducing local production of free estrogens. Breast adipose stromal cells (ASCs) contain aromatase activity-an obligatory step in the biosynthesis of estrogens-and possibly contain sulfatase activity. We investigated the effects of tibolone, its metabolites and the pure progestin Org 2058 on PGE(2)-stimulated aromatase activity and on sulfatase activity in human ASC primary cultures and on sulfatase activity in MCF-7 and T47D cell lines. In MCF-7, tibolone and metabolites, but not Org 2058, were found to inhibit sulfatase activity. In T47D, tibolone inhibited sulfatase only at 10(-6)M, although weakly. ASC had high sulfatase activity, which was inhibited by 10(-6)M of tibolone, Org 4094 and Org 30126, but not by Org OM38 or Org 2058. Surprisingly, aromatase activity in ASC was increased by both tibolone and Org 2058 at 10(-6)M. As ligand binding assay results and immunohistochemistry indicated the absence of progesterone and estrogen receptors in ASC, these effects on aromatase and sulfatase activity in ASC likely take place by other routes. Because tibolone and its metabolites inhibit sulfatase activity, and because tibolone only increases aromatase activity at a high concentration, we conclude that effects of tibolone on the breast are probably safe.  相似文献   

9.
The effects of glucocorticoids on the steroidogenesis of ovarian granulosa cells were investigated. Cortisol and dexamethasone inhibited the increase in aromatase activity induced by FSH in cultured rat granulosa cells. In the same cultures progesterone production was stimulated to a maximum of 167% of the control level. This differential effect of glucocorticoids on estrogen and progesterone production by the granulosa cells indicates that glucocorticoids exert specific inhibition of the induction of aromatase by FSH and do not cause a general suppression of granulosa cell activity. In contrast to their inhibition of the FSH induction of aromatase enzymes, glucocorticoids did not interfere with the activity of pre-existing aromatase enzymes. In granulosa cells containing fun aromatase activity, treatment with cortisol and dexamethasone did not inhibit aromatization of androstenedione to estrogens whereas two known aromatase inhibitors (dihydrotestosterone and 4-androstene-3, 6, 17-trione) were effective. These results indicate that the glucocorticoids exert a selective inhibition of the FSH-induction of aromatase activity in rat granulosa cells by a mechanism other than directly interfering with the aromatization reaction.  相似文献   

10.
The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase and 3 alpha-hydroxysteroid oxidoreductase was investigated by isolating estrone, estradiol, estriol, dihydrotestosterone, androstanedione, androsterone, 3 alpha-androstanediol, testosterone and androstenedione after incubation of the cells with [14C]testosterone or [14C]androstenedione. For experiments with 14C-labeled substrate the cells were incubated in medium, charcoal stripped of steroids without Phenol Red. Preincubation from 6 to 36 h with cortisol in concentrations of 10(-8) - 10(-6) M showed maximal stimulation of aromatase activity after 12 h preincubation with cortisol in concentrations of 0.5-1.0 x 10(-6) M in both cell lines. When preincubation with cortisol was omitted no estrogen synthesis was detected. The formation of androgen was not altered after preincubation with cortisol. Pronounced differences were found in estrogen and in androgen metabolism in the two cell lines suggesting a local regulation of the hormonal environment. The aromatase activity, which is low in many tissues could be stimulated by cortisol without altering the androgen metabolism was found to be a suitable system for investigations of the cellular interconversion of androgens and estrogens and for investigations of the in vitro regulation of the enzymes involved.  相似文献   

11.
The great majority of breast cancers are in their early stage hormone-dependent and it is well accepted that estradiol (E(2)) plays an important role in the genesis and evolution of this tumor. Human breast cancer tissues contain all the enzymes: estrone sulfatase, 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD), aromatase, involved in the last steps of E(2) bioformation in this tissue. Quantitative data show that the 'sulfatase pathway', which transforms estrogen sulfates into the bioactive unconjugated E(2), is 100-500 times higher than the 'aromatase pathway' which converts androgens into estrogens. In this paper we explore the effect of E(2) on the sulfatase activity using two hormone-dependent human breast cancer cells: MCF-7 and T-47D. The action of E(2) on the sulfatase activity was evaluated by the conversion of estrone sulfate (E(1)S) into E(2). The cells were incubated in Minimal Essential Medium (MEM) containing 5% steroid-depleted fetal calf serum and incubated with physiological concentrations of [(3)H]E(1)S (5 x 10(-9) M) alone (control) or in the presence of E(2) (5 x 10(-10) to 5 x 10(-5) M) for 24 h at 37 degrees C. It was found that E(2) is a potent inhibitory agent of the estrone sulfatase activity in both cell lines. A low concentration of E(2): 5 x 10(-9) M decreases the sulfatase activity by 67% in MCF-7 cells and 57% in T-47D cells. More than 80% of the decrease in the formation of E(2) was obtained with the dose of 5 x 10(-7) M in both cell lines. It is concluded that this paradoxical effect of E(2) adds a new biological response of this hormone and could be related to estrogen replacement therapy in which it was observed to have either no effect or to decrease breast cancer mortality in postmenopausal women. Preliminary results are indicated in the Proceedings of the 14th International Symposium of the Journal of Steroid Biochemistry & Molecular Biology (Quebec, Canada, 24-27 June 2000) [J. Steroid Biochem. Molec. Biol. 76 (2001) 95-104](1) and presented at the 83rd Annual Meeting of the Endocrine Society (Denver, USA, 20-23 June 2001 (abstract no. P2-615).  相似文献   

12.
Intratumoral levels of estrogens in breast cancer   总被引:4,自引:0,他引:4  
Breast cancer tissue is an endocrine organ and particularly the estrogen biosynthetic properties of this tissue have been well studied. The concentration of estradiol in breast cancer tissue from postmenopausal patients is considerably higher than that in the circulation and appears to depend largely on local production. Androgenic precursor steroids are abundantly present, but estrogen storage pools like fatty acid derivatives appear to be less important than initially thought. New, potent and highly specific aromatase inhibitors effectively inhibit peripheral conversion of androgens to estrogens (Cancer Res. 53: 4563, 1993) as well as intratumour aromatase, median aromatase activity being 89% lower in the tissue from patients pretreated with aromatase inhibitor 7 days prior to surgery (P<0.001). Also the intratissue concentrations of estrogens were decreased (64% and 80% reduction, respectively for estrone and estradiol; P=0.001 and <0.05; Cancer Res. 57: 2109, 1997). These results illustrate that intratissue estrogen biosynthesis is effectively inhibited by the new generation of aromatase inhibitors. The pathophysiological consequences of this finding are currently under study.  相似文献   

13.
Chemopreventive potential for human breast cancer was assessed in vitro with Cnidii Rhizoma extract. Cnidii Rhizoma inhibited cell proliferation in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) human breast carcinoma cell lines. Cytochrome P450 (CYP) 1A1-mediated ethoxyresorufin O-deethylase (EROD) activity was inhibited by Cnidii Rhizoma in a concentration-dependent manner. In addition, Cnidii Rhizoma extract caused inhibition of microsomal aromatase (estrogen synthase) activity. Ornithine decarboxylase (ODC) activity was reduced to 40.3% of the control after 6 h treatment with Cnidii Rhizoma (5 mg/mL) in MCF-7 breast cancer cells. Cnidii Rhizoma extract markedly reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated matrix metalloproteinase (MMP)-9 activity. These results suggest that Cnidii Rhizoma could be of therapeutic value in preventing human breast cancer.  相似文献   

14.
Estrogen suppression through the use of an aromatase inhibitor is an effective endocrine treatment option for postmenopausal breast cancer patients with estrogen receptor (ER)-positive disease, however, there are concerns that long-term estrogen deprivation will inevitably lead to resistance. To address the issue of acquired resistance to long-term estrogen deprivation our laboratory has developed an ER+/PR- hormone-independent breast cancer cell line, MCF-7:5C which is a variant clone of wild-type MCF-7 cells. Originally, these cells were cultured in estrogen-free MEM containing 5% charcoal-stripped calf serum and were found to be resistant to both estradiol (E(2)) and antiestrogens. Interestingly, a completely different phenomenon was observed when MCF-7:5C cells were cultured in phenol red-free RPMI 1640 medium containing 10% charcoal-stripped fetal bovine serum (SFS). Using DNA quantitation assays, we examined the effect of E(2) on the growth of MCF-7:5C cells under different media conditions. Our results showed that 10(-9)M E(2) caused a dramatic 90% reduction in the growth of MCF-7:5C cells cultured in RPMI medium containing 10% SFS but did not have any significant inhibitory effects on cells cultured in MEM media. Additional experiments were performed to determine whether the medium or the serum facilitated the inhibitory effects of E(2) and the results indicated that it was the serum. Annexin V and DAPI staining confirmed that the E(2)-induced growth inhibition of MCF-7:5C cells was due to apoptosis. We also examined the tumorigenic potential of MCF-7:5C cells by injecting 1x10(7)cells/site into ovariectomized athymic mice and found that these cells, previously cultured in RPMI media, spontaneously grew into tumors in the absence of E(2). Overall, these results show that low concentrations (>10(-11)M) of E(2) are capable of inducing apoptosis in an aromatase resistant breast cancer cell model and that this effect is highly influenced by the medium in which the cells are grown.  相似文献   

15.
CGS 16949A inhibited the conversion of [4-14C]androstenedione (A) to [4-14C]estrone by human placental microsomes in a competitive manner (Ki = 1.6 nM). Aminoglutethimide, also a competitive inhibitor, had a Ki = 0.7 microM in this assay system. The Km for the aromatization of A was 0.11 microM. Using ovarian microsomes from immature rats primed with pregnant mare's serum gonadotrophin and using [4-14C]testosterone conversion to [4-14C]estradiol as a measure of aromatase activity, the Km was 42 nM. At a substrate concentration 3-fold the Km, CGS 16949A was 180 times more potent as an inhibitor than aminoglutethimide, exhibiting half-maximal inhibition at 1.7 nM as compared to 0.3 microM. In vivo CGS 16949A lowered ovarian estrogen synthesis by gonadotropin-primed, androstenedione treated, immature rats by 90% at a dose of 260 micrograms/kg (PO). A dose of 100 mg/kg of aminoglutethimide was needed to produce this same effect. CGS 16949A at a dose of 4 mg/kg (PO) induced uterine atrophy (aromatase inhibition) without inducing adrenal hypertrophy - indicating a lack of inhibition of corticosterone secretion, while aminoglutethimide at 40 mg/kg (PO) induced adrenal hypertrophy without inducing uterine atrophy. CGS 16949A was neither androgenic nor estrogenic in rats using standard bioassays. The data suggest that CGS 16949A may serve as a potent and selective agent for modulating estrogen-dependent functions.  相似文献   

16.
Studies suggest that the steroid, dehydroepiandrosterone (DHEA) can exert effects directly, in addition to its indirect role serving as a precursor for other steroids such as androgens and estrogens. Because DHEA is one of the most abundant adrenal steroids secreted in man, we investigated the functional activity of DHEA on the classic estrogen response element (ERE) in the presence of the estrogen receptor (ER) in transiently transfected cells. GT1-7 hypothalamic neuronal cells, devoid of the estrogen receptor, were transiently transfected with the estrogen receptor expression plasmid (HEGO) and the estrogen response element luciferase (ERELUC) reporter vector. As expected, a dose-response stimulation of luciferase activity was observed in cells treated with estradiol. Concentrations of estradiol from 10−10–10−6 M resulted in a 136–195 percent increase in luciferase activity compared with control. A dose-response stimulation was also observed in the cells treated with DHEA. A maximum stimulation of 177 percent increase in luciferase activity compared with control was observed with DHEA at a concentration of 10−5 M. Both the estradiol and DHEA stimulation of ERE luciferase activity was inhibited by the estrogen receptor antagonist, ICI 182,780. The aromatase inhibitor, formestane in combination with estradiol or DHEA had no effect on luciferase activity, suggesting that the effect of DHEA is independent of its conversion to estadiol. Estradiol levels, as measured by ELISA, were appropriately elevated in the estradiol-treated cells but were not significantly different from the control cells in the DHEA-treated cells. These studies suggest a functional in vitro role of DHEA in activating the ERE in the presence of the classic ER.  相似文献   

17.
Callophycin A was originally isolated from the red algae Callophycus oppositifolius and shown to mediate anticancer and cytotoxic effects. In our collaborative effort to identify potential chemopreventive and anticancer agents with enhanced potency and selectivity, we employed a tetrahydro-β-carboline-based template inspired by callophycin A for production of a chemical library. Utilizing a parallel synthetic approach, 50 various functionalized tetrahydro-β-carboline derivatives were prepared and assessed for activities related to cancer chemoprevention and cancer treatment: induction of quinone reductase 1 (QR1) and inhibition of aromatase, nitric oxide (NO) production, tumor necrosis factor (TNF)-α-induced NFκB activity, and MCF7 breast cancer cell proliferation. Biological results showed that the n-pentyl urea S-isomer 6a was the strongest inducer of QR1 with an induction ratio (IR) value of 4.9 at 50 μM [the concentration to double the activity (CD)=3.8 μM] and its corresponding R-isomer 6f had an IR value of 4.3 (CD=0.2 μM). The isobutyl carbamate derivative 3d with R stereochemistry demonstrated the most potent inhibitory activity of NFκB, with the half maximal inhibitory concentration (IC(50)) value of 4.8 μM, and also showed over 60% inhibition at 50 μM of NO production (IC(50)=2.8 μM). The R-isomer urea derivative 6j, having an appended adamantyl group, exhibited the most potent MCF7 cell proliferation inhibitory activity (IC(50)=14.7 μM). The S-isomer 12a of callophycin A showed the most potent activity in aromatase inhibition (IC(50)=10.5 μM).  相似文献   

18.
Aromatase and its inhibitors--an overview   总被引:2,自引:0,他引:2  
Estrogen synthesis by aromatase occurs in a number of tissues throughout the body. Strategies which reduce production of estrogen offer useful means of treating hormone-dependent breast cancer. Initially, several steroidal compounds were determined to be selective inhibitors of aromatase. The most potent of these, 4-hydroxyandrostenedione (4-OHA) inhibits aromatase competitively but also causes inactivation of the enzyme. A number of other steroidal inhibitors appear to act by this mechanism also. In contrast, the newer imidazole compounds are reversible, competitive inhibitors. In vivo studies demonstrated that 4-OHA inhibited aromatase activity in ovarian and peripheral tissues and reduced plasma estrogen levels in rat and non-human primate species. In rats with mammary tumors, reduction in ovarian estrogen production was correlated with tumor regression. 4-OHA was also found to inhibit gonadotropin levels in animals in a dose-dependent manner. The mechanism of this effect appears to be associated with the weak androgenic activity of the compound. Together with aromatase inhibition, this action may contribute to reducing the growth stimulating effects of estrogen. A series of studies have now been completed in postmenopausal breast cancer patients treated with 4-OHA either 500 mg/2 weeks or weekly, or 250 mg/2 weeks. These doses did not affect gonadotropin levels. Plasma estrogen concentrations were significantly reduced. Complete or partial tumor regression occurred in 26% of the patients and the disease was stabilized in 25% of the patients. The results suggest that 4-OHA is of benefit to postmenopausal patients who have relapsed from prior hormonal therapies. Several of the steroidal inhibitors are now entering clinical trials as well as non-steroidal compounds which are more potent and selective than aminoglutethimide. Aromatase inhibitors should provide several useful additions to the treatment of breast cancer.  相似文献   

19.
A series of novel chalcones and bis-chalcones containing boronic acid moieties has been synthesized and evaluated for antitumor activity against the human breast cancer MDA-MB-231 (estrogen receptor-negative) and MCF7 (estrogen receptor-positive) cell lines and against two normal breast epithelial cell lines, MCF-10A and MCF-12A. These molecules inhibited the growth of the human breast cancer cell lines at low micromolar to nanomolar concentrations, with five of them (1-4, 9) showing preferential inhibition of the human breast cancer cell lines. Furthermore, bis-chalcone 8 exhibited a more potent inhibition of colon cancer cells expressing wild-type p53 than of an isogenic cell line that was p53-null.  相似文献   

20.
The feasibility of utilizing rainbow trout, Oncorhynchus mykiss, as an alternative model for studying the inhibition of aromatase (CYP 19) was investigated. The suppression of estrogen-dependent tumors by aromatase inhibitors has been important in the treatment of breast cancer. Estrogens, estrogen precursors and xenoestrogens have been found to promote liver cancer in the trout model. A steroid, 4-hydroxy-4-androstene-3,17-dione (4-OHA), and non-steroids, aminoglutethimide (AG) and Letrozole (CGS 20267), all of which are known aromatase inhibitors in rats and humans, were examined in vitro for activity in trout ovarian microsomes. Aromatase activity was quantified as the release of 3H2O from the conversion of [3H]-4-androstene-3,17-dione to 17beta-estradiol and estrone. Trout ovarian microsomes exhibited activity between 39-60 fmol mg(-1) min(-1) with a calculated Vmax of 71.1 fmol mg(-1) min(-1) when incubated at 25 degrees C with 200 nM 4-androstene-3,17-dione (K(M) = 435 nM). Significant inhibition by 4-OHA up to 80% was seen at 1.5 microM. At 2000 microM, AG decreased aromatase activity by up to 82%. Letrozole reduced aromatase activity a maximum of 90% in a dose-dependent manner, but the Ki (2.3 microM) was 1000-fold higher than reported in human trials. Indole-3-carbinol and some of its derivatives, two DDE isomers and four flavones (except alpha-naphthoflavone) at 1000 microM did not significantly inhibit aromatase in vitro. Letrozole and clotrimazole, fed to juvenile rainbow trout at doses up to 1000 ppm for 2 weeks, were not effective in suppressing dehydroepiandrosterone (DHEA) induced increases in vitellogenin and 17beta-estradiol levels. These results document that trout aromatase is sensitive to inhibition in vitro by known inhibitors of the mammalian enzyme. The mechanism(s) for lack of inhibition in vivo is currently unknown and must be further investigated in order to develop a trout model for studying the role of aromatase in carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号