首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cell envelope structure of Salmonella typhimurium LT2, which has a heptose-deficient lipopolysaccharide (LPS), is significantly different from that of an isogenic strain with a normal LPS. The rough strain, when examined by freeze-etching, lacks most surface structures that are routinely present in the smooth strain (surface particles and flagella) and has few transmemberane studs in the cytoplasmic membrane (those present are generally found in aggregates), and the outer membrane cleavage is substantially stronger than that of the smooth strain. These envelope differences were independent of both growth temperature and culture age. Examination of ultrathin sections indicated that the rough strain has an outer membrane which forms a much more defined double-track artifact than the smooth strain. The addition of MgCl2 to the growth medium of the rough strain decreased the extent of outer membrane cleavage, and flagella became evident in freeze-etched preparations. The presence of supplemental MgCl2 in the growth medium, which resulted in these morphological changes in the rough strain, also produced growth at a previously restrictive temperature and a decrease in the leakage of periplasmic enzymes. The smooth strain was unaltered morphologically or physiologically by MgCl2 under identical conditions. It is suggested that the outer membrane of the rough strain is more planar.  相似文献   

3.
High-resolution cryo electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member of the spirochetal family. High-resolution cryo-ET reconstructions provided detailed structures of the cell envelope, which is significantly different from that of Gram-negative bacteria. The 4-nm lipid bilayer of both outer membrane and cytoplasmic membrane resolved in 3D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High-resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located cone-shaped structure at both ends of the bacterium. Furthermore, 3D subvolume averages of periplasmic flagellar motors and flagellar filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Our findings provide the most detailed structural understanding of periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and to escape host immune responses.  相似文献   

4.
A novel genus of hyperthermophilic, strictly chemolithotrophic archaea, Ignicoccus, has been described recently, with (so far) three isolates in pure culture. Cells were prepared for ultrastructural investigation by cultivation in cellulose capillaries and processing by high-pressure freezing, freeze-substitution and embedding in Epon. Cells prepared in accordance with this protocol consistently showed a novel cell envelope structure previously unknown among the Archaea: a cytoplasmic membrane; a periplasmic space with a variable width of 20 to 400 nm, containing membrane-bound vesicles; and an outer sheath, approximately 10 nm wide, resembling the outer membrane of gram-negative bacteria. This sheath contained three types of particles: numerous tightly, irregularly packed single particles, about 8 nm in diameter; pores with a diameter of 24 nm, surrounded by tiny particles, arranged in a ring with a diameter of 130 nm; and clusters of up to eight particles, each particle 12 nm in diameter. Freeze-etched cells exhibited a smooth surface, without a regular pattern, with frequent fracture planes through the outer sheath, indicating the presence of an outer membrane and the absence of an S-layer. The study illustrates the novel complex architecture of the cell envelope of Ignicoccus as well as the importance of elaborate preparation procedures for ultrastructural investigations.  相似文献   

5.
6.
The prolipoprotein, a secretory precursor of the outer membrane lipoprotein of Escherichia coli, is known to be accumulated in the cell envelope when cells are grown in the presence of a cyclic antibiotic, globomycin. The prolipoprotein was localized in the cytoplasmic membrane when it was separated from the outer membrane by sucrose-density gradient centrifugation. However, when the envelope fraction was treated with sodium sarcosinate, the prolipoprotein was found almost exclusively in the sarcosinate-insoluble outer membrane fraction. The prolipoprotein separated in the cytoplasmic membrane by sucrose-density gradient centrifugation was soluble in sarcosinate and could not form a complex with the outer membrane once solubilized in sarcosinate. Labeling of the two lysine residues at positions 2 and 5 of the prolipoprotein with [3H]dinitrophenylfluorobenzene was enhanced 26-fold when the cells were disrupted by sonication. On the other hand, a tryptic fragment of the ompA protein, which is known to exist in the periplasmic space, increased its susceptibility to [3H]dinitrophenylfluorobenzene only 5.3-times upon disruption of the cell structure. These results indicate that the prolipoprotein accumulated in the presence of globomycin is translocated across the cytoplasmic membrane and interacts with the outer membrane. At the same time, it is attached to the cytoplasmic membrane with its amino-terminal signal peptide in such a way that the amino-terminal portion of the signal peptide containing two lysine residues is left inside the cytoplasm.  相似文献   

7.
Two different groups of methanol-utilizing bacteria were studied by electron microscopy. Bacteria using the serine pathway for the assimilation of methanol were found to have a thin cell envelope (outer membrane, periplasmic area and cytoplasmic membrane). Those using the assimilatory ribulose monophosphate pathway of formaldehyde fixation had a much thicker cell envelope and in the case ofPseudomonas C protrusions of the outer membrane were found.  相似文献   

8.
细菌菌影(bacterial ghost,BG)是革兰阴性菌在噬菌体PhiX174的裂解基因E的作用下形成不含核酸、核糖体等胞质内容物的细菌空壳。这种细菌空壳保留了与天然细菌一样的完整外膜结构,且不具有活菌样的致病作用,可作为疫苗无需佐剂就能诱导机体产生体液免疫应答和细胞免疫应答。菌影内部及外膜上可装载DNA、抗原和药物等异源物质,易被机体免疫细胞识别捕获,使其成为一种新型的生物递送载体。另外,菌影具有制备简单,易于保存等优点。细菌菌影在疾病预防和治疗方面具有广阔的应用前景。  相似文献   

9.
We describe two new pillotinaceous spirochetes (Canaleparolina darwiniensis, Diplocalyx cryptotermitidis) and identify for the first time Hollandina pterotermitidis from both the subterranean termite Cryptotermes cavifrons and the wood-eating cockroach Cryptocercus punctulatus based on morphometric analysis of transmission electron micrographic thin sections. C. darwiniensis, gen. nov., sp. nov., limited to near Darwin, Australia, invariably is present on the surface of the treponeme-studded trichomonad Mixotricha paradoxa, a consistent inhabitant of the hindgut of healthy termite Mastotermes darwiniensis. The spirochete both attached to the surface of protists and free-swimming in the paunch (hindgut) lumen of the insect has 16 periplasmic flagella (16:32:16) and imbricated wall structures that resemble flattened crenulations of Pillotina. The flagella surround half the protoplasmic cylinder. C. darwiniensis is the largest (0.5 microm diameter x 25 microm length) of the three epibiotic bacteria (two spirochetes, one rod) that comprise the complex cortex of its host Mixotricha paradoxa. Several criteria distinguish Diplocalyx cryptotermitidis sp. nov. isolated from Cryptotermes cavifrons intestine: smaller diameter, fewer flagella, absence of inner and outer coats of the outer membrane, wider angle subtended by its flagella and, most notably, cytoplasmic tubule-associated centers, which are periodic electron dense spheres within the protoplasmic cylinder from which emanate cytoplasmic tubules up to 24 nm in diameter. This is also the first report of abundant populations of Hollandina in Cryptotermes cavifrons (those populations belong to the species H. pterotermitidis). Morphometric analysis of the first thin sections of any spirochetes (published nearly 40 years ago by A.V. Grimstone) permits us to identify the large (0.9 microm diameter) free-swimming intestinal symbiont of Cryptocercus punctulatus also as Hollandina pterotermitidis.  相似文献   

10.
Fine structure of the cell envelope layers of Flexibacter polymorphus.   总被引:1,自引:0,他引:1  
Electron microscopy of the filamentous gliding marine bacterium Flexibacter polymorphus demonstrated that the cell envelope consists of an electron-dense intermediate layer located between two unit-type membranes: an outer membrane, presumably of lipopolysaccharide, and an inner cytoplasmic membrane. Separation of living filaments into single cells by lysozyme suggests that a peptidoglycan moiety, possibly corresponding to the intermediate layer, might be situated between the two membranes. Cell division proceeds by invagination of the cytoplasmic membrane and intermediate layer forming a transverse septum. Cells generally fail to separate after the division process, so that a common outer membrane encloses all of the cells in a single filament. There is a continuous layer of macromolecular cup-shaped elements ('goblets') attached to the outermost surface of the lipopolysaccharide membrane. Tangential thin sections, as well as negatively stained preparations of envelope fragments (produced by sonication of autolyzed cells), showed that the goblets are arranged in a close-packed hexagonal array. The presence of electron-dense structures located between the outer and inner membranes, and exhibiting the same periodicity as the goblets, suggests that some part of the goblets penetrates the outer membrane and extends across the periplasmic space to the dense intermediate layer or cytoplasmic membrane. Spontaneous autolysis in aging cultures is accompanied by the formation and release into the culture medium of large numbers of outer membrane vesicles coated with globlets. A tentative reconstruction of the envelope of F. polymorphus, based on the fine-structural data, is presented.  相似文献   

11.
The outer membrane of Campylobacter coli, C. jejuni and C. fetus cell envelopes appeared as three fractions after sucrose gradient centrifugation. Each outer membrane fraction was contaminated with succinate dehydrogenase activity from the cytoplasmic membrane fraction. Similarly the inner membrane fraction was contaminated with 2-ketodeoxyoctonate and outer membrane proteins including the porin(s). The separation of these two membranes was not facilitated by variations in lysozyme treatment, cell age, presence or absence of flagella, or longer lipopolysaccharide chain length. Sodium lauroyl sarcosinate extraction resulted in an outer membrane fraction which contained some inner membrane contamination and produced multiple bands upon sucrose gradient centrifugation. Triton X-100 extraction removed the inner membrane from the outer membrane and Triton X-100/EDTA treatment extracted lipopolysaccharide-rich regions of the outer membrane which contained almost exclusively the Campylobacter porin(s). These data indicated that the inner and outer membranes of the Campylobacter cell envelope were very difficult to separate, possibly because of extensive fusions between these two membranes.  相似文献   

12.
Basal structure and attachment of flagella in cells of Proteus vulgaris   总被引:18,自引:14,他引:4  
Abram, Dinah (Purdue University, Lafayette, Ind.), Henry Koffler, and A. E. Vatter. Basal structure and attachment of flagella in cells of Proteus vulgaris. J. Bacteriol. 90:1337-1354. 1965.-The attachment of flagella to cells of Proteus vulgaris was studied electron microscopically with negatively stained and shadow-cast preparations of ghosts from standard cultures and from special cultures that produced "long forms." The flagellum, the basal portion of which is hooked, arises within the cell from a nearly spherical structure, 110 to 140 A in diameter. This structure appears to be associated with the cytoplasmic membrane; it may be a part of the membrane or a separate entity that lies just beneath the membrane. Flagella associated with cell walls free from cytoplasmic membrane frequently have larger bodies, 200 to 700 A in diameter, associated with their base. These structures probably consist at least partly of fragments of the cytoplasmic membrane, a portion of which folds around a smaller structure. Flagella in various stages of development were observed in long forms of P. vulgaris cells grown at low temperature. The basal structure of these flagella was similar to that of the long or "mature" flagella. Strands connecting the basal structures were observed in ghosts of long forms; these strands appear to be derived from the cytoplasmic membrane. Flagella were found to be attached to fragments of cell wall and to cytoplasmic membrane in a similar manner as they are attached to ghosts. In isolates of flagella that have been separated from the cells mechanically, the organelles often terminate in hooks which almost always appear naked, but have a different fine structure than the flagellum proper.  相似文献   

13.
Campylobacter jejuni sheds its flagella and varying proportions of the poles of the cell late in the growth cycle, resulting in the production of very small flagellated structures 0.1 to 0.3 microM in diameter. Electron microscopy revealed that these structures were minicells possessing outer membrane, cytoplasmic membrane, flagellar basal complex, and polar membrane; nucleoplasms were not seen. The initial event in the formation of these minicells involved a constriction of the cytoplasmic membrane, segregating the polar regions of the cell. The peptidoglycan layer of the cell wall was not visible, but was presumed to lyse at the separation site of minicell formation, and to reform or remain intact along the main length of the cell because the rods did not spheroplast. Finally, rupture and resealing of the outer membrane component of the wall resulted in the release of fully enclosed minicells and nonflagellated rods.  相似文献   

14.
The effects of the nonionic detergent Triton X-114 on the ultrastructure of Treponema pallidum subsp. pallidum are presented in this study. Treatment of Percoll-purified motile T. pallidum with a 1% concentration of Triton X-114 resulted in cell surface blebbing followed by lysis of blebs and a decrease in diameter from 0.25-0.35 micron to 0.1-0.15 micron. Examination of thin sections of untreated Percoll-purified T. pallidum showed integrity of outer and cytoplasmic membranes. In contrast, thin sections of Triton X-114-treated treponemes showed integrity of the cytoplasmic membrane but loss of the outer membrane. The cytoplasmic cylinders generated by detergent treatment retained their periplasmic flagella, as judged by electron microscopy and immunoblotting. Recently identified T. pallidum penicillin-binding proteins also remained associated with the cytoplasmic cylinders. Proteins released by Triton X-114 at 4 degrees C were divided into aqueous and hydrophobic phases after incubation at 37 degrees C. The hydrophobic phase had major polypeptide constituents of 57, 47, 38, 33-35, 23, 16, and 14 kilodaltons (kDa) which were reactive with syphilitic serum. The 47-kDa polypeptide was reactive with a monoclonal antibody which has been previously shown to identify a surface-associated T. pallidum antigen. The aqueous phase contained the 190-kDa ordered ring molecule, 4D, which has been associated with the surface of the organisms. Full release of the 47- and 190-kDa molecules was dependent on the presence of a reducing agent. These results indicate that 1% Triton X-114 selectively solubilizes the T. pallidum outer membrane and associated proteins of likely outer membrane location.  相似文献   

15.
We report a novel strategy for selecting mutations that mislocalize lipoproteins within the Escherichia coli cell envelope and describe the mutants obtained. A strain carrying a deletion of the chromosomal malE gene, coding for the periplasmic maltose-binding protein (MalE), cannot use maltose unless a wild-type copy of malE is present in trans. Replacement of the natural signal peptide of preMalE by the signal peptide and the first four amino acids of a cytoplasmic membrane-anchored lipoprotein resulted in N-terminal fatty acylation of MalE (lipoMalE) and anchoring to the periplasmic face of the cytoplasmic membrane, where it could still function. When the aspartate at position +2 of this protein was replaced by a serine, lipoMalE was sorted to the outer membrane, where it could not function. Chemical mutagenesis followed by selection for maltose-using mutants resulted in the identification of two classes of mutations. The single class I mutant carried a plasmid-borne mutation that replaced the serine at position +2 by phenylalanine. Systematic substitutions of the amino acid at position +2 revealed that, besides phenylalanine, tryptophan, tyrosine, glycine and proline could all replace classical cytoplasmic membrane lipoprotein sorting signal (aspartate +2). Analysis of known and putative lipoproteins encoded by the E. coli K-12 genome indicated that these amino acids are rarely found at position +2. In the class II mutants, a chromosomal mutation caused small and variable amounts of lipoMalE to remain associated with the cytoplasmic membrane. Similar amounts of another, endogenous outer membrane lipoprotein, NlpD, were also present in the cytoplasmic membrane in these mutants, indicating a minor, general defect in the sorting of outer membrane lipoproteins. Four representative class II mutants analysed were shown not to carry mutations in the lolA or lolB genes, known to be involved in the sorting of lipoproteins to the outer membrane.  相似文献   

16.
J M Pages 《Biochimie》1983,65(10):531-541
Bacterial protein synthesis takes place in the cytoplasm, thus periplasmic and outer membrane proteins pass through the cytoplasmic membrane during their dispatch to the cell envelope. The exported proteins are synthesized as precursor that contains an extra amino-terminal sequence of amino-acids. This sequence, termed "signal sequence", is essential for transport of the envelope proteins through the inner membrane and is cleaved during the exportation process. Various hypotheses for the mechanism have been presented, and it is likely that no signal model will be suitable to the export of all cell envelope proteins. This review is focused on the relationship between the cytoplasmic membrane and the precursor form. The physiological state of the membrane - fluidity, membrane potential for instance - is the strategic requirement of exportation process. Precursors can be accumulated in whole cells with various treatments which alter the cytoplasmic membrane. This inhibition of processing is obtained by modification of unsaturated to saturated fatty acids ratio or with phenylethyl alcohol which perturbs the membrane fluidity, with uncoupler agents such as carbonyl cyanide m-chlorophenyl hydrazone which dissipate the proton motive force, or with hybrid proteins which get jamming in the membrane. However, little is known about the early steps of translocation process across the cytoplasmic membrane ; for instance, it is not clear yet whether energy is required for either or both of the first interaction membrane-precursor and the crossing through the membrane. Several studies have recently shown the presence of exportation sites and of proteins which might play a prominent role in the export process, but the mechanism of discrimination between outer membrane proteins and periplasmic proteins is unknown. Considerable work has been done by genetic or biochemical methods and we have now the first lights of the expert mechanism.  相似文献   

17.
Thermal damage to the outer membrane of Escherichia coli W3110 was studied. When E. coli cells were heated at 55 degrees C in 50 mM Tris-hydrochloride buffer at pH 8.0, surface blebs were formed on the cell envelope, mainly at the septa of dividing cells. Membrane lipids were released from the cells during the heating period, and part of the released lipids formed vesicle-like structures from the membrane. This vesicle fraction had a lipopolysaccharide to phospholipid ratio similar to that of the outer membrane of intact cells, whereas it had a lower content of protein than the isolated outer membrane. After heating bacterial cells at 55 degrees C for 30 min, the resulting leakage from the cells of a periplasmic enzyme, alkaline phosphatase, amounted to 52% of the total activity, whereas no release of a cytoplasmic enzyme, glucose-6-phosphate dehydrogenase, was detected. The results obtained suggest that surface blebs formed by heat treatment almost completely consist of the outer membrane and that the blebs may be gradually released from the cell surface into the heating menstruum to partially form vesicles.  相似文献   

18.
EDTA-induced outer membrane losses from whole cells of wild-type Escherichia coli (O111:B4) and several lipopolysaccharide (LPS) mutants derived from E. coli K-12 D21 were analyzed. EDTA treatment induced losses of LPS (up to 40%), outer membrane proteins OmpA, OmpF/C, and lipoprotein, periplasmic proteins, and phosphatidylethanolamine. The extent of these releases was strain specific. Successively more EDTA was necessary to induce these losses from strains containing LPS with increasing polysaccharide chain length. An additional heat shock immediately following the EDTA treatment had no effect on LPS release, but it decreased the release of outer membrane proteins and reduced the leakage of periplasmic proteins, suggesting that the temporary increase in outer membrane "permeability" caused by Ca2+-EDTA treatment was rapidly reversed by the redistribution of outer membrane components, a process which is favored by a mild heat shock. The fact that the material released from E. coli C600 showed a constant ratio of lipoprotein, OmpA, and phosphatidylethanolamine at all EDTA concentrations tested suggests that the material is lost as specific outer membrane patches. The envelope alterations caused by EDTA did not result in cell lysis.  相似文献   

19.
MICROTUBULATION OF THE INNER MEMBRANE OF THE NUCLEAR ENVELOPE   总被引:4,自引:3,他引:1       下载免费PDF全文
In the course of a light and electron microscopy study of spermatogenesis in the European crayfish, Astacus fluviatilis, spermatocytes of abnormal appearance were observed in two instances in individuals that had passed the mating period. The electron microscope showed that the inner membrane of the nuclear envelope of these cells was erupting into a mass of microtubules, 15 to 18 mµ in diameter and 0.5 µ or more in length, while the outer membrane transformed into cytoplasmic vesicles. Stages in the formation of these novel processes were followed. The plasma membrane of the affected cells was seen in some cases to erupt into similar although shorter microtubules. It is concluded that the phenomenon is part of a degenerative process in which the spermatocytes are being absorbed by sustentacular cells. It is suggested that the observations provide further evidence for a fundamental functional as well as a morphological similarity between the membranes bounding the nucleus and the plasma membrane.  相似文献   

20.
Many studies have reported microorganisms as efficient biocatalysts for colour removal of dye‐containing industrial wastewaters. We present the first comprehensive study to identify all molecular components involved in decolorization by bacterial cells. Mutants from the model organism Shewanella oneidensis MR‐1, generated by random transposon and targeted insertional mutagenesis, were screened for defects in decolorization of an oxazine and diazo dye. We demonstrate that decolorization is an extracellular reduction process requiring a multicomponent electron transfer pathway that consists of cytoplasmic membrane, periplasmic and outer membrane components. The presence of melanin, a redox‐active molecule excreted by S. oneidensis, was shown to enhance the dye reduction rates. Menaquinones and the cytochrome CymA are the crucial cytoplasmic membrane components of the pathway, which then branches off via a network of periplasmic cytochromes to three outer membrane cytochromes. The key proteins of this network are MtrA and OmcB in the periplasm and outer membrane respectively. A model of the complete dye reduction pathway is proposed in which the dye molecules are reduced by the outer membrane cytochromes either directly or indirectly via melanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号