首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The dependence of sodium efflux on the internal sodium concentration on sodium-free magnesium, Tris, coline and lithium media was investigated on frog striated muscle. In all the sodium-substituted media, the efflux concentration curve was found to be dependent on the external rubidium concentration, being S-shaped at the saturating external rubidium (potassium) concentration and becoming close to linear at the low external rubidium concentration (0.5-1.0 microM). The maximal sodium efflux at saturating levels of internal sodium concentrations remains unchanged with various sodium substitutes in the medium, whereas the affinity constant of internal sodium sites is dependent on the external cations.  相似文献   

2.
Proton-activated rubidium transport catalyzed by the sodium pump   总被引:1,自引:0,他引:1  
Although the sodium pump normally exchanges three sodium for two potassium ions, experiments with inside-out red cell membrane vesicles show that the stoichiometry is reduced when the cytoplasmic sodium concentration is decreased to less than 1 mM. The present study was designed to gain insight into the question whether other monovalent cations, particularly protons, can act as sodium congeners in effecting pump-mediated potassium transport (ATP-dependent rubidium efflux from inside-out vesicles). The results show that at low cytoplasmic sodium concentration, an increase in proton concentration effects a further reduction in sodium:rubidium stoichiometry, to a value less than the minimal expected (1Na+:3Rb+). Furthermore, when vesicles containing 86RbCl are incubated in nominally sodium-free medium. ATP-dependent net rubidium efflux (normal influx) occurs when the pH is reduced from approximately 7.0 to 6.2 or less. This efflux is inhibited by strophanthidin and vanadate. These experiments support the notion that the sodium pump can operate as an ATP-dependent proton-activated rubidium (potassium) pump without obligatory countertransport of sodium ions.  相似文献   

3.
Human leucocytes incubated in tissue culture fluid of low-sodium concentration (2 mM; iso-osmolarity maintained with choline chloride) reached a new equlibrium within 1 hour and lost approximately 25% of intracellular potassium and 70% of intracellular sodium. The rate constant for ouabainsensitive sodium efflux fell by more than 50% and the ouabain-insensitive rate constant increased nearly threefold in the low-sodium medium. Total sodium efflux fell in proportion to internal sodium whereas ouabain-insensitive sodium efflux remained unchanged. A reduction in external sodium from 140 to 2 mM was associated with a 75% fall in sodium influx. In the low-sodium medium ouabainsensitive potassium influx exceeded ouabain-sensitive sodium efflux and no ouabain-sensitive potassium efflux could be demonstrated. Ouabain-insensitive potassium influx and that portion of potassium efflux which is dependent on external potassium fell in parallel in low-sodium cells, suggesting reduced activity of a ouabain-insensitive K:K exchange system.  相似文献   

4.
Cells isolated from the epithelium of the small intestine are used to study the relationship between amino acid or sugar-coupled sodium transport and potassium uptake through the sodium/potassium pump. Potassium influx is a saturable function of the external potassium concentration. Uptake in the presence of ouabain, a specific pump inhibitor, is greatly reduced. This remaining influx is linearly related to the concentration up to 6 mM potassium. Sugars and amino acids are actively accumulated by the intestinal cells. Their transport is accompanied by an initial extra influx of sodium. Although cells seem to regulate their internal sodium concentrations, this is not accompanied with a concomitant increase in potassium uptake through the pump. Thus L-alanine, 3-0-methyl-D-glucoside, and alpha-methyl-D-glucoside all fail to increase the rate of ouabain-sensitive potassium uptake. A very high coupling ratio of sodium efflux to potassium influx through the pump would be a likely explanation of the present results though they cannot be regarded as conclusive.  相似文献   

5.
Catecholamines induce net salt and water movements in duck red cells incubated in isotonic solutions. The rate of this response is approximately three times greater than a comparable effect observed in 400 mosmol hypertonic solutions in the absence of hormone (W.F. Schmidt and T. J. McManus. 1977 a.J. Gen. Physiol. 70:59-79. Otherwise, these two systems share a great many similarities. In both cases, net water and salt movements have a marked dependence on external cation concentrations, are sensitive to furosemide and insensitive to ouabain, and allow the substitution of rubidium for external potassium. In the presence of ouabain, but the absence of external potassium (or rubidium), a furosemide-sensitive net extrusion of sodium against a large electrochemical gradient can be demonstrated. When norepinephrine-treated cells are incubated with ouabain and sufficient external sodium, the furosemide-sensitive, unidirectional influxes of both sodium and rubidium are half- maximally saturated at similar rubidium concentrations; with saturating external rubidium, the same fluxes are half-maximal at comparable levels of external sodium. In the absence of sodium, a catecholamine-stimulated, furosemide-sensitive influx of rubidium persists. In the absence of rubidium, a similar but smaller component of sodium influx can be seen. We interpret these results in terms of a cotransport model for sodium plus potassium which is activated by hypertonicity or norepinephrine. When either ion is absent from the incubation medium, the system promotes an exchange-diffusion type of movement of the co-ion into the cells. In the absence of external potassium, net movement of potassium out of the cell leads to a coupled extrusion of sodium against its electrochemical gradient.  相似文献   

6.
After a 20 min initial washout, the rate of loss of radioactively labeled sodium ions from sodium-enriched muscle cells is sensitive to the external sodium and potassium ion concentrations. In the absence of external potassium ions, the presence of external sodium ions increases the sodium efflux. In the presence of external potassium ions, the presence of external sodium ions decreases the sodium efflux. In the absence of external potassium ions about one-third of the Na+ efflux that depends upon the external sodium ion concentration can be abolished by 10-5 M glycoside. The glycoside-insensitive but external sodium-dependent Na+ efflux is uninfluenced by external potassium ions. In the absence of both external sodium and potassium ions the sodium efflux is relatively insensitive to the presence of 10-5 M glycoside. The maximal external sodium-dependent sodium efflux in the absence of external potassium ions is about 20% of the magnitude of the maximal potassium-dependent sodium efflux. The magnitude of the glycoside-sensitive sodium efflux in K-free Ringer solution is less than 10% of that observed when sodium efflux is maximally activated by potassium ions. The inhibition of the potassium-activated sodium efflux by external sodium ions is of the competitive type. Reducing the external sodium ion concentration displaces the plots of sodium extrusion rate vs. [K]o to the left and upwards.  相似文献   

7.
Furosemide-inhibitable components in unidirectional cation fluxes have been identified in frog skeletal muscle. In sodium loaded muscles, placed in sodium-free rubidium lithium media, furosemide (1 mM) inhibits partially rubidium and lithium influxes as well as potassium and sodium outfluxes. The furosemide-inhibitable components were found to depend on the presence of ouabain. They were greatly diminished in sodium-free magnesium media and were present in chloride-free nitrate containing media. The dependence of furosemide-inhibitable sodium efflux on internal sodium content was also described.  相似文献   

8.
Net taurine transport across the frog retinal pigment epithelium-choroid was measured as a function of extracellular potassium concentration, [K+]o. The net rate of retina-to-choroid transport increased monotonically as [K+]o increased from 0.2 mM to 2 mM on the apical (neural retinal) side of the tissue. No further increase was observed when [k+]o was elevated to 5 mM. The [K+]o changes that modulate taurine transport approximate the light-induced [K+]o changes that occur in the extracellular space separating the photoreceptors and the apical membrane of the pigment epithelium. The taurine-potassium interaction was studied by using rubidium as a substitute for potassium and measuring active rubidium transport as a function of extracellular taurine concentration. An increase in apical taurine concentration, from 0.2 mM to 2 mM, produced a threefold increase in active rubidium transport, retina to choroid. Net taurine transport can also be altered by relatively large, 55 mM, changes in [Na+]o. Apical ouabain, 10(-4) M, inhibited active taurine, rubidium, and potassium transport; in the case of taurine, this inhibition is most likely due to a decrease in the sodium electrochemical gradient. In sum, these results suggest that the apical membrane contains a taurine, sodium co-transport mechanism whose rate is modulated, indirectly, through the sodium pump. This pump has previously been shown to be electrogenic and located on the apical membrane, and its rate is modulated, indirectly, by the taurine co-transport mechanism.  相似文献   

9.
The effects of 0.3-10 nM extracellular protons (pH 9.5-8.0) on ouabain-sensitive rubidium influx were determined in 4,4'-diisocyanostilbene-2, 2'-disulfonate (DIDS)-treated human and rat erythrocytes. This treatment clamps the intracellular H. We found that rubidium binds much better to the protonated pump than the unprotonated pump; 13-fold better in rat and 34-fold better in human erythrocytes. This clearly shows that protons are not competing with rubidium in this proton concentration range. Bretylium and tetrapropylammonium also bind much better to the protonated pump than the unprotonated pump in human erythrocytes and in this sense they are potassium-like ions. In contrast, guanidinium and sodium bind about equally well to protonated and unprotonated pump in human red cells. In rat red cells, protons actually make sodium bind less well (about sevenfold). Thus, protons have substantially different effects on the binding of rubidium and sodium. The effect of protons on ouabain binding in rat red cells was intermediate between the effects of protons on rubidium binding and on sodium binding. Remarkably, all four cationic inhibitors (bretylium, guanidinium, sodium, and tetrapropylammonium) had similar apparent inhibitory constants for the unprotonated pump ( approximately 5-10 mM). The K(d) for proton binding to the human pump, with the empty transport site facing extracellularly is 13 nM, whereas the extracellular transport site loaded with sodium is 9.5 nM, and with rubidium is 0.38 nM. In rat red cells there is also a substantial difference in the K(d) for proton binding to the sodium-loaded pump (14.5 nM) and the rubidium-loaded pump (0.158 nM). These data suggest that important rearrangements occur at the extracellular pump surface as the pump moves between conformations in which the outward facing transport site has sodium bound, is empty, or has rubidium bound and that guanidinium is sodium-like and bretylium and tetrapropylammonium are rubidium-like.  相似文献   

10.
A study has been made with human red cells of sodium movements that are sensitive to the drug furosemide. The aim was to see if furosemide-sensitive movements that are symmetrical (exchange) became asymmetrical (net transport) on replacement of chloride with nitrate as the major external anion. Cells were incubated for 4 h at 37 degrees C with 140 mM sodium, and chloride or nitrate as the principal anion. Under a variety of conditions (presence and absence of ouabain or furosemide, or both) the cell sodium concentration was always higher when chloride was replaced with nitrate. The cells became leakier to sodium. Tracer studies indicated that, in contrast to the results in chloride medium, the decrease in sodium influx was greater than the fall in efflux when furosemide was added to cells in nitrate medium. The results confirm that the sensitivity of sodium efflux to furosemide depended on chloride. However, influx showed a different sensitivity in that furosemide still inhibited in cells incubated in nitrate medium. The stimulation of sodium influx with nitrate medium was independent of external potassium (10-50 mM) and the furosemide-sensitive influx was also constant. It is concluded that symmetrical transmembrane sodium movements with cells in chloride medium became downhill asymmetrical in nitrate medium, giving a net gain of cell sodium that was insensitive to ouabain and sensitive to furosemide. The drug thus partly retarded the gain of cell sodium that otherwise occurred in the somewhat leaky cells.  相似文献   

11.
Isolated posterior gills of shore crabs,Carcinus maenas, previously acclimated for at least 1 month to brackish water of 10 S, were connected with an artificial hemolymph circulation by means of thin polyethylene tubings. Gills were symmetrically perfused and bathed with 50 % sea water. Transepithelial potential differences (PDs) and fluxes of sodium between medium and blood were measured under control conditions and following reductions of PDs by means of 5 mM internal (blood side) ouabain, 0.5 mM internal and external (bathing medium) NaCN or by exhaustion of energy reserves along with a prolonged perfusion period of more than 9 h. In these experiments22Na was used as tracer. Each of the three modes of reducing transepithelial potential differences resulted in a decrease in sodium influxes from 500–1000 µmoles g–1 h–1 to 250–400 µmoles g–1 h–1. The findings suggest that sodium influx, which normally greatly exceeds efflux, was diminished by its active component. The remaining non-inhibitable influx equals efflux values. Our findings thus indicate that efflux is completely passive, while influx has — beside a passive component of efflux magnitudes — an additional active portion which is much larger than the passive component. Since ouabain is a specific inhibitor of the Na-K-ATPase, our results confirm previous findings (Siebers et al., 1985) that the basolaterally located Na-K-ATPase generates the transepithelial potential difference in the gills, which is inside negative by about 6–12 mV. Inhibition of the active portion of sodium influx by internal ouabain along with reduced PDs suggests that transepithelial PDs generated by the branchial sodium pump are the driving force for active sodium uptake in hyperregulating brackish water crabs.  相似文献   

12.
The action of acetazolamine on sodium transport in Rana esculenta skin was studied with the external face bathed in dilute (2mMM) or concentrated (Ringer) solutions of sodium chloride.The absorption of Na+ from a dilute solution is inhibited at an acetazolamide concentration of 10−5M. This is due to an inhibition of the influx: the efflux remains unchanged. Acetazolamide has no effect, however, on transport from Ringer solution.The graphic determination of the Na+ transport pool at the 2 mM NaCl concentration showed that acetazolamide diminished the pool without affecting the t12. The inhibitor had no effect on the pool at the higher (Ringer) concentration.These results indicate that acetazolamide acts on the external barrier of the sodium transport compartment without affecting the active pump of this ion when it is being transported from a dilute sodium chloride solution.  相似文献   

13.
The sensitivity of sodium efflux to the removal of potassium ions from the external solution and the change in sodium efflux occurring when sodium ions are also removed were observed to be related. When Tris was used to replace external sodium ions, increases in sodium efflux were always observed whether the sensitivity of sodium efflux to external potassium ions was weak or strong. Greater percentage increases in sodium efflux occurred, however, the greater the sensitivity of sodium efflux to external potassium ions. When lithium ions were used to replace external sodium ions, increases in sodium efflux occurred if the sensitivity of efflux to external potassium ions was strong whereas decreases in sodium efflux took place if the sensitivity of efflux to external potassium ions was weak. Intermediate sensitivities of efflux to external potassium resulted in no change in efflux upon substitution of lithium ions for external sodium ions. In the presence of 10-5 M ouabain, substitution of Tris for external sodium ions always resulted in a small decrease in sodium efflux. The data can be described in terms of a model which assumes the presence of efflux stimulation sites that are about 98% selective to potassium ions and about 2% selective to sodium or lithium ions.  相似文献   

14.
The interactions of potassium ions and ATP on transport ATPase activity are discussed, and the interpretation of these interactions is shown to be often ambiguous. Caldwell''s (1968) Physiological Review model is discussed with particular reference to the observed kinetics of sodium: sodium exchange in red cells. Recent experimental work on the properties of the ouabain-sensitive component of potassium efflux from red cells is described. This component of efflux occurs only if either sodium or potassium are present in the external medium, but the effects of external sodium and potassium are not additive. The relation between ouabain-sensitive potassium efflux and the external concentration of sodium (in a potassium-free medium) or of potassium (in low- and high-sodium media) are described. When starved sodium-poor red cells are poisoned with iodoacetamide, loaded with phosphate, and incubated in high-sodium potassium-free media, the ouabain-sensitive efflux of potassium appears to be accompanied by the reversal of the entire ATPase system. About two to three potassium ions leave by the ouabain-sensitive route for each molecule of ATP synthesized. If potassium is present in the external medium, no ouabain-sensitive synthesis of ATP occurs and the ouabain-sensitive efflux of potassium presumably involves the reversal of only the last part of the ATPase system.  相似文献   

15.
The selectivity of sodium channels in squid axon membranes was investigated with widely varying concentrations of internal ions. The selectivity ratio, PNa/PK, determined from reversal potentials decreases from 12.8 to 5.7 to 3.5 as the concentration of internal potassium is reduced from 530 to 180 to 50 mM, respectively. The internal KF perfusion medium can be diluted by tetramethylammonium (TMA), Tris, or sucrose solutions with the same decrease in PNa/PK. The changes in the selectivity ratio depend upon internal permeant ion concentration rather than ionic strength, membrane potential, or chloride permeability. Lowering the internal concentration of cesium, rubidium, guanidnium, or ammonium also reduces PNa/Pion. The selective sequence of the sodium channel is: Na greater than guanidinium greater than ammonium greater than K greater than Rb greater than Cs.  相似文献   

16.
Using inside-out vesicles of human red cell membranes, the effects of cytoplasmic Na+ in the range 0-5 mM on ATP-dependent 22Na+ influx (normal efflux) and 86Rb+ efflux (normal influx) were tested. The sodium pump stoichiometry, i.e. the ratio of net 22Na+ influx:86Rb+ efflux was reduced markedly when the cytoplasmic Na+ was reduced to less than 1 mM. Reduction in cytoplasmic Na+ concentration was associated also with a decreased sensitivity of the pump to effects of extracellular Rb+. Thus, extracellular (intravesicular) Rb+ stimulation observed at high ATP concentration and inhibition observed at low ATP concentration were not observed when the cytoplasmic (extravesicular) Na+ concentration was reduced to less than or equal to 0.2 mM. It is suggested that at low cytoplasmic Na+, the pump can operate with less than maximal sites filled with Na+ ions. Under this condition, it is likely that an enzymic step associated with either the ion translocation step or the enzyme's conformational transition becomes rate-limiting.  相似文献   

17.
The effluxes of potassium, rubidium, sodium and lithium from the sartorius muscle of Rana temporaria in magnesium-Ringer solution free of sodium and potassium have been studied with the flame-emission technique. The channel-forming antibiotic gramicidin A (2.5 X X10(-7)-1 X 10(-6) mol/l) enhanced the efflux of potassium and rubidium and increased the rate constants of these effluxes. Gramicidin had small if any effect on sodium and lithium effluxes and rate constants. After 60-100 min in a gramicidin-containing medium, the potassium efflux and the corresponding rate constant reached a steady-state level. This steady-state value depended on gramicidin concentration. Effect of gramicidin on both the potassium efflux and the rate constant was partially reversible. Thallium ions (2.5 X 10(-3) and 5 X 10(-3) mol/l) in sodium- and potassium- free magnesium Ringer solution caused a large increase in effluxes of all the cations examined (K+, Rb+ and Na+) both in presence and absence of gramicidin. Possible mechanisms of gramicidin and thallium effects are discussed.  相似文献   

18.
The membrane potential (Em) of sartorius muscle fibers was made insensitive to [K+] by equilibration in a 95 mM K+, 120 mM Na+ Ringer solution. Under these conditions a potassium-activated, ouabain-sensitive sodium efflux was observed which had characteristics similar to those seen in muscles with Em sensitive to [K+]. In addition, in the presence of 10 mM K+, these muscles were able to produce a net sodium extrusion against an electrochemical gradient which was also inhibited by 10- minus 4 M oubain. This suggests that the membrane potential does not play a major role in the potassium activation of the sodium pump in muscles.  相似文献   

19.
Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction.  相似文献   

20.
The elemental composition of chief cells of parathyroid glands from patients with adenomatous primary hyperparathyroidism (HPT) and uremic secondary HPT was studied by X-ray microanalysis. Glands histologically deemed normal were used as controls. The analyses were also carried out on tissue specimens incubated in hypo-, normo- and hypercalcemic media (0.5, 1.25, and 3.0 mM calcium concentration). Analysis of chief cells from normal glands did not reveal any significant differences in ionic composition after exposure to the different calcium concentrations. In chief cells from adenomatous and uremic hyperplastic glands, elemental changes were noted. In comparison with specimens incubated in 1.25 mM calcium medium, cells in 0.5 mM calcium medium had a lower content of potassium and phosphorus. After stimulation with increasing extracellular concentration, an increase in the K/Na ratio was observed, due to a marked decrease of sodium and an increase of potassium: the calcium concentration was almost unchanged. Our findings indicate that in HPT an increase in serum calcium concentration might exert a stimulatory effect on the Na/K pump (sodium pump) and on the calcium-activated potassium channels. Either of these mechanisms might contribute to a lowering of cytoplasmic calcium. Our observations suggest that changes in ionic content of the parathyroid cells may be of importance for the stimulus secretion process in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号