首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of complex I between phage f2 RNA and coat protein, leading to repression of phage RNA polymerase synthesis, depends nonlinearly upon the concentration of the coat protein. Maximum formation of complex I was observed when six molecules of coat protein were bound to one molecule of RNA. RNase digestion of a glutaraldehyde-fixed complex left, as the products, coat protein oligomers. The heaviest, hexamers, predominated in the mixture. It was also shown that, in an ionic environment required for phage protein synthesis, coat protein at a concentration optimum for complex I formation exists in solution as a dimer. The results indicate that the translational repression of the RNA polymerase cistron is due to a cooperative attachment to phage template of three dimers of coat protein, forming a hexameric cluster on an RNA strand.  相似文献   

2.
The RNA binding site of bacteriophage MS2 coat protein.   总被引:8,自引:1,他引:8       下载免费PDF全文
The coat protein of the RNA bacteriophage MS2 binds a specific stem-loop structure in viral RNA to accomplish encapsidation of the genome and translational repression of replicase synthesis. In order to identify the structural components of coat protein required for its RNA binding function, a series of repressor-defective mutants has been isolated. To ensure that the repressor defects were due to substitution of binding site residues, the mutant coat proteins were screened for retention of the ability to form virus-like particles. Since virus assembly presumably requires native structure, this approach eliminated mutants whose repressor defects were secondary consequences of protein folding or stability defects. Each of the variant coat proteins was purified and its ability to bind operator RNA in vitro was measured. DNA sequence analysis identified the nucleotide and amino acid substitutions responsible for reduced RNA binding affinity. Localization of the substituted sites in the three-dimensional structure of coat protein reveals that amino acid residues on three adjacent strands of the coat protein beta-sheet are required for translational repression and RNA binding. The sidechains of the affected residues form a contiguous patch on the interior surface of the viral coat.  相似文献   

3.
In an Escherichia coli cell-free protein synthesis assay, mRNA isolated from cells late after infection by phage T4 out-competes bacteriophage f2 RNA. Addition of a saturating or subsaturating amount of T4 mRNA inhibits translation of f2 RNA, while even an excess of f2 RNA has no effect on translation of T4 mRNA. Peptide mapping of reaction products labeled with formyl-[35S]-methionyl-tRNA was used to quantitate f2 and T4 protein products synthesized in the same reaction. We suggest that messenger RNA competition might be one mechanism by which T4 superinfection of cells infected with phage f2 blocks translation of f2 RNA and possibly host mRNA.  相似文献   

4.
We have analyzed the molecular mechanism that makes translation of the MS2 replicase cistron dependent on the translation of the upstream coat cistron. Deletion mapping on cloned cDNA of the phage shows that the ribosomal binding site of the replicase cistron is masked by a long distance basepairing to an internal coat cistron region. Removal of the internal coat cistron region leads to uncoupled replicase synthesis. Our results confirm the model as originally proposed by Min Jou et al. (1). Activation of the replicase start is sensitive to the frequency of upstream translation, but never reaches the level of uncoupled replicase synthesis.  相似文献   

5.
One of the mechanisms underlying the regulation of the bacteriophage f2 RNA translation is the repression of the phage RNA-replicase formation by coat protein. This repression is due to the formation of a complex between f2 RNA and coat protein (complex I). In this work the mechanism of complex I formation as well as the effect of this complex on the f2 RNA-replicase formation was followed by inhibition of alanine incorporation into RNA-replicase polypeptide which was separated by polyacrylamide gel electrophoresis. The molar ratios of protein to f2 RNA in complex I were analyzed by sucrose gradient sedimentation. It was been found that complex I consists of six molecules of coat protein bound per one molecule of RNA. Ribonuclease digestion of the glutaraldehyde-fixed complex resulted in a mixture of products in which the hexamers of coat protein molecules were predominant. This indicates that the six molecules of coat protein bound to f2 RNA are neighbouring. It has been also shown that under conditions required for phage protein synthesis, coat protein occurs in solution is dimer. The results show that the translational repression of the RNA-replicase cistron is due to the cooperative attachment of three dimers of coat protein to phage template, forming a hexameric cluster on the RNA strand. The proposed mechanism of the complex I formation seems to be in good agreement with the sequence of events in the phage F2 life cycle. It is known that shortly after infection of the host cell the coat protein and phage RNA-replicase begin to be synthesised. According to our findings, the first portions of coat protein do not affect the translation of the RNA-replicase gene since at low concentration the coat protein occure in the form of monomers. At a later period of phage development, when the concentration of coat protein is sufficiently high to promote the formation of protein dimers, the translational repressor complex is formed and the RNA-replicase gene becomes inoperative.  相似文献   

6.
We present the results of in vitro binding studies aimed at defining the key recognition elements on the MS2 RNA translational operator (TR) essential for complex formation with coat protein. We have used chemically synthesized operators carrying modified functional groups at defined nucleotide positions, which are essential for recognition by the phage coat protein. These experiments have been complemented with modification-binding interference assays. The results confirm that the complexes which form between TR and RNA-free phage capsids, the X-ray structure of which has recently been reported at 3.0 A, are identical to those which form in solution between TR and a single coat protein dimer. There are also effects on operator affinity which cannot be explained simply by the alteration of direct RNA-protein contacts and may reflect changes in the conformational equilibrium of the unliganded operator. The results also provide support for the approach of using modified oligoribonucleotides to investigate the details of RNA-ligand interactions.  相似文献   

7.
RNA binding properties of the coat protein from bacteriophage GA.   总被引:2,自引:0,他引:2       下载免费PDF全文
The coat protein of bacteriophage GA, a group II RNA phage, binds to a small RNA hairpin corresponding to its replicase operator. Binding is specific, with a Ka of 71 microM -1. This interaction differs kinetically from the analogous coat protein-RNA hairpin interactions of other RNA phage and also deviates somewhat in its pH and salt dependence. Despite 46 of 129 amino acid differences between the GA and group I phage R17 coat proteins, the binding sites are fairly similar. The essential features of the GA coat protein binding site are a based-paired stem with an unpaired purine and a four nucleotide loop having an A at position -4 and a purine at -7. Unlike the group I phage proteins, the GA coat protein does not distinguish between two alternate positions for the unpaired purine and does not show high specificity for a pyrimidine at position -5 of the loop.  相似文献   

8.
The site of interaction of phage Qbeta coat protein with Qbeta RNA was determined by ribonuclease T1 degradation of complexes of coat protein and [32P]-RNA obtained by codialysis of the components from urea into buffer solutions. The degraded complexes were recovered by filtration through nitrocellulose filters, and bound [32P]RNA fragments were extracted and separated by polyacrylamide gel electrophoresis. Fingerprinting and further sequence analysis established that the three main fragments obtained (chain lengths 88, 71 and 27 nucleotides) all consist of sequences extending from the intercistronic region to the beginning of the replicase cistron. These results suggest that in the replication of Qbeta, as in the case of R17, coat protein acts as a translational repressor by binding to the ribosomal initiation site of the replicase cistron.  相似文献   

9.
10.
The effects of insertion of the major coat protein of f1 bacteriophage into Escherichia coli membranes were investigated under conditions allowing in vivo analysis of phosphatidylserine synthesis. An E. coli strain possessing a temperature-sensitive phosphatidylserine decarboxylase was utilized under conditions in which the decarboxylase activity was reduced but nonlethal. The presence of the coat protein in the host membranes inhibits the activity of the phosphatidylserine synthetase and perhaps affects the activity of the phosphatidylserine decarboxylase.  相似文献   

11.
12.
13.
Semi-conservative replication of bacteriophage f2 RNA   总被引:3,自引:0,他引:3  
  相似文献   

14.
Genomic SELEX is a method for studying the network of nucleic acid–protein interactions within any organism. Here we report the discovery of several interesting and potentially biologically important interactions using genomic SELEX. We have found that bacteriophage MS2 coat protein binds several Escherichia coli mRNA fragments more tightly than it binds the natural, well-studied, phage mRNA site. MS2 coat protein binds mRNA fragments from rffG (involved in formation of lipopolysaccharide in the bacterial outer membrane), ebgR (lactose utilization repressor), as well as from several other genes. Genomic SELEX may yield experimentally induced artifacts, such as molecules in which the fixed sequences participate in binding. We describe several methods (annealing of oligonucleotides complementary to fixed sequences or switching fixed sequences) to eliminate some, or almost all, of these artifacts. Such methods may be useful tools for both randomized sequence SELEX and genomic SELEX.  相似文献   

15.
The filamentous bacteriophage f1 can be transformed into a spherical particle (spheroid) or an intermediate shortened filament with a flared end (I-forms) by exposure to a chloroform-water interface at 22 or 4 degrees C, respectively. The protein composition of bacteriophage f1 spheroids and I-forms was examined by separating the proteins from the purified. [35S]cysteine-labeled particles by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. Quantitation of the radioactivity on the gels showed that I-forms and spheroids contain the same complement of minor coat proteins as do untreated f1 phage. This composition is unchanged after removal of the DNA, either by digestion with micrococcal nuclease or by centrifugation of the particles through CsCl density gradients, indicating that none of the minor coat proteins is held in the particles solely through an interaction with the DNA. We also examined the location of the A protein in I-forms by decoration with ferritin-conjugated antibodies and examination under the electron microscope and found that the A protein is located specifically at the flared end of the I-form particle, through which the DNA is extruded and at which contraction into spheroids begins. The implications of these results with regard to the orientation of the DNA within the capsid and the process of infection are discussed.  相似文献   

16.
We have probed the effects of altering buffer conditions on the behaviour of two aptamer RNAs for the bacteriophage MS2 coat protein using site-specific substitution of 2′-deoxy-2-aminopurine nucleotides at key adenosine positions. These have been compared to the wild-type operator stem–loop oligonucleotide, which is the natural target for the coat protein. The fluorescence emission spectra show a position and oligonucleotide sequence dependence which appears to reflect local conformational changes. These are largely similar between the differing oligonucleotides and deviations can be explained by the individual features of each sequence. Recognition by coat protein is enhanced, unaffected or decreased depending on the site of substitution, consistent with the known protein–RNA contacts seen in crystal structures of the complexes. These data suggest that the detailed conformational dynamics of aptamers and wild-type RNA ligands for the same protein target are remarkably similar.  相似文献   

17.
The RNA bacteriophages of E. coli specifically encapsidate a single copy of the viral genome in a protein shell composed mainly of 180 molecules of coat protein. Coat protein is also a translational repressor and shuts off viral replicase synthesis by interaction with a RNA stem-loop containing the replicase initiation codon. We wondered whether the translational operator also serves as the viral pac site, the signal which mediates the exclusive encapsidation of viral RNA by its interaction with coat protein. To test this idea we measured the ability of lacZ RNA fused to the translational operator to be incorporated into virus-like particles formed from coat protein expressed from a plasmid. The results indicate that the operator-lacZ RNA is indeed encapsidated and that nucleotide substitutions in the translational operator which reduce the tightness of the coat protein-operator interaction also reduce or abolish encapsidation of the hybrid RNA. When coat protein is expressed in excess compared to the operator-lacZ RNA, host RNAs are packaged as well. However, elevation of the level of operator-lacZ RNA relative to coat protein results in its selective encapsidation at the expense of cellular RNAs. Our results are consistent with the proposition that this single protein-RNA interaction accounts both for translational repression and viral genome encapsidation.  相似文献   

18.
Selection of high affinity RNA ligands to the bacteriophage R17 coat protein.   总被引:10,自引:0,他引:10  
RNA ligands with high affinity for the bacteriophage R17 coat protein were isolated from a pool of random RNA molecules using SELEX. Of the 38 ligands isolated, 36 were found to contain a hairpin very similar to the naturally occurring coat protein binding site in the R17 genome. The common features of these 36 sequences provide a consensus binding site and predict components of a hairpin that promote favorable interaction with the coat protein. These include a tetraloop of primary sequence AUCA and a variable-length stem with a bulged adenosine residue at a specific stem position. The predicted consensus agrees well with the highest-affinity RNA binding site of the R17 coat protein, identified through classical but laborious techniques. These results demonstrate the value of SELEX as a tool for isolating high affinity RNA ligands to a specific target protein, and the further value of those ligands to point the researcher toward natural sequences for that target protein.  相似文献   

19.
The complete amino acid sequence of the coat protein of RNA bacteriophage PRR1 is presented. After thermolysin digestion, 26 peptides were isolated, covering the complete coat protein chain. Their alignment was established in part using automated Edman degradation on the intact protein, in part with overlapping peptides obtained by enzymic hydrolysis with trypsin, pepsin, subtilisin and Staphylococcus aureus protease, and by chemical cleavage with cyanogen bromide and N-bromosuccinimide. To obtain the final overlaps, a highly hydrophobic, insoluble tryptic peptide was sequenced for seven steps by the currently used manual dansyl-Edman degradation procedure, which was slightly modified for application on insoluble peptides. PRR1 coat protein contains 131 amino acids, corresponding to a molecular weight of 14534. It is highly hydrophobic, and the residues with ionizable side chains are distributed unevenly: acidic residues are absent in the middle third of the sequence, whereas a clustering of basic residues occurs between positions 44 and 62. PRR1 coat protein was compared with the coat proteins of RNA coliphages MS2 and Q beta, and the minimum mutation distance was calculated for both comparisons. It is highly probable that PRR1. Q beta and MS2 share a common ancestor. The basic region present in the three coat proteins is recognized as an essential structural feature of RNA phage coat proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号