首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reversible redox chemistry of coenzyme Q serves a crucial function in respiratory electron transport. Biosynthesis of Q in Escherichia coli depends on the ubi genes. However, very little is known about UbiX, an enzyme thought to be involved in the decarboxylation step in Q biosynthesis in E. coli and Salmonella enterica. Here we characterize an E. coli ubiX gene deletion strain, LL1, to further elucidate E. coli ubiX function in Q biosynthesis. LLI produces very low levels of Q, grows slowly on succinate as the sole carbon source, accumulates 4-hydroxy-3-octaprenyl-benzoate, and has reduced UbiG O-methyltransferase activity. Expression of either E. coli ubiX or the Saccharomyces cerevisiae ortholog PAD1, rescues the deficient phenotypes of LL1, identifying PAD1 as an ortholog of ubiX. Our results suggest that both UbiX and UbiD are required for the decarboxylation of 4-hydroxy-3-octaprenyl-benzoate in E. coli coenzyme Q biosynthesis, especially during logarithmic growth.  相似文献   

2.
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to grow on nonfermentable carbon sources. The biosynthesis of Q involves two separate O-methylation steps. In yeast, the first O-methylation utilizes 3, 4-dihydroxy-5-hexaprenylbenzoic acid as a substrate and is thought to be catalyzed by Coq3p, a 32.7-kDa protein that is 40% identical to the Escherichia coli O-methyltransferase, UbiG. In this study, farnesylated analogs corresponding to the second O-methylation step, demethyl-Q(3) and Q(3), have been chemically synthesized and used to study Q biosynthesis in yeast mitochondria in vitro. Both yeast and rat Coq3p recognize the demethyl-Q(3) precursor as a substrate. In addition, E. coli UbiGp was purified and found to catalyze both O-methylation steps. Futhermore, antibodies to yeast Coq3p were used to determine that the Coq3 polypeptide is peripherally associated with the matrix-side of the inner membrane of yeast mitochondria. The results indicate that one O-methyltransferase catalyzes both steps in Q biosynthesis in eukaryotes and prokaryotes and that Q biosynthesis is carried out within the matrix compartment of yeast mitochondria.  相似文献   

3.
Coq3 O-methyltransferase carries out both O-methylation steps in coenzyme Q (ubiquinone) biosynthesis. The degree to which Coq3 O-methyltransferase activity and expression are dependent on the other seven COQ gene products has been investigated. A panel of yeast mutant strains harboring null mutations in each of the genes required for coenzyme Q biosynthesis (COQ1-COQ8) have been prepared. Mitochondria have been isolated from each member of the yeast coq mutant collection, from the wild-type parental strains and from respiratory deficient mutants harboring deletions in ATP2 or COR1 genes. These latter strains constitute Q-replete, respiratory deficient controls. Each of these mitochondrial preparations has been analyzed for COQ3-encoded O-methyltransferase activity and steady state levels of Coq3 polypeptide. The findings indicate that the presence of the other COQ gene products is required to observe normal levels of O-methyltransferase activity and the Coq3 polypeptide. However, COQ3 steady state RNA levels are not decreased in any of the coq mutants, relative to either wild-type or respiratory deficient control strains, suggesting either a decreased rate of translation or a decreased stability of the Coq3 polypeptide. These data are consistent with the involvement of the Coq polypeptides (or the Q-intermediates formed by the Coq polypeptides) in a multi-subunit complex. It is our hypothesis that a deficiency in any one of the COQ gene products results in a defective complex in which the Coq3 polypeptide is rendered unstable.  相似文献   

4.
5.
辅酶Q10(CoQ10)是一种脂溶性抗氧化剂,具有提高人体免疫力、延缓衰老和增强人体活力等功能,广泛应用于制药行业和化妆品行业。微生物发酵法能可持续性生产辅酶Q10,具有越来越多的商业价值。本研究首先将来自类球红细菌的十聚异戊二烯焦磷酸合成酶基因(dps)整合到大肠杆菌ATCC 8739染色体上,敲除内源的八聚异戊二烯焦磷酸合成酶基因(ispB),使内源的辅酶Q8合成途径被辅酶Q10合成途径取代,得到稳定生产辅酶Q10的菌株GD-14,其辅酶Q10产量达0.68 mg/L,单位细胞含量达0.54 mg/g DCW。随后用多个固定强度调控元件在染色体上对MEP途径的关键基因dxs和idi基因以及ubiCA基因进行组合调控,将辅酶Q10单位细胞含量提高2.46倍(从0.54到1.87 mg/g)。进一步引入运动发酵单胞菌Zymomonas mobilis的Glf转运蛋白代替自身的磷酸烯醇式丙酮酸:碳水化合物磷酸转移酶系统(PTS),使辅酶Q10产量进一步提高16%。最后,对高产菌株GD-51进行分批补料发酵,辅酶Q10产量达433 mg/L,单位细胞含量达11.7 mg/g DCW。这是目前为止文献报道的大肠杆菌产辅酶Q10最高菌株。  相似文献   

6.
Coenzyme Q (Q) is a lipid that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. There are eight complementation groups of Q-deficient Saccharomyces cerevisiae mutants designated coq1-coq8. Here we provide genetic evidence that several of the Coq polypeptides interact with one another. Deletions in any of the COQ genes affect the steady-state expression of Coq3p, Coq4p, and Coq6p. Antibodies that recognize Coq1p, a hexaprenyl diphosphate synthase, were generated and used to determine that Coq1p is peripherally associated with the inner membrane on the matrix side. Yeast Deltacoq1 mutants harboring diverse Coq1 orthologs from prokaryotic species produce distinct sizes of polyprenyl diphosphate and hence distinct isoforms of Q including Q(7), Q(8), Q(9), or Q(10) (Okada, K., Kainou, T., Matsuda, H., and Kawamukai, M. (1998) FEBS Lett. 431, 241-244). We find that steady-state levels of Coq3p, Coq4p, and Coq6p are rescued in some cases to near wild-type levels by the presence of these diverse Coq1 orthologs in the Deltacoq1 mutant. These data suggest that the lipid product of Coq1p or a Q-intermediate derived from polyprenyl diphosphate is involved in stabilizing the Coq3, Coq4, and Coq6 polypeptides.  相似文献   

7.
Coenzyme Q(n) is a fully substituted benzoquinone containing a polyisoprene tail of distinct numbers (n) of isoprene groups. Caenorhabditis elegans fed Escherichia coli devoid of Q(8) have a significant lifespan extension when compared to C. elegans fed a standard 'Q-replete'E. coli diet. Here we examine possible mechanisms for the lifespan extension caused by the Q-less E. coli diet. A bioassay for Q uptake shows that a water-soluble formulation of Q(10) is effectively taken up by both clk-1 mutant and wild-type nematodes, but does not reverse lifespan extension mediated by the Q-less E. coli diet, indicating that lifespan extension is not due to the absence of dietary Q per se. The enhanced longevity mediated by the Q-less E. coli diet cannot be attributed to dietary restriction, different Qn isoforms, reduced pathogenesis or slowed growth of the Q-less E. coli, and in fact requires E. coli viability. Q-less E. coli have defects in respiratory metabolism. C. elegans fed Q-replete E. coli mutants with similarly impaired respiratory metabolism due to defects in complex V also show a pronounced lifespan extension, although not as dramatic as those fed the respiratory deficient Q-less E. coli diet. The data suggest that feeding respiratory incompetent E. coli, whether Q-less or Q-replete, produces a robust life extension in wild-type C. elegans. We believe that the fermentation-based metabolism of the E. coli diet is an important parameter of C. elegans longevity.  相似文献   

8.
The mechanism underlying the interaction of the Escherichia coli signal recognition particle receptor FtsY with the cytoplasmic membrane has been studied in detail. Recently, we proposed that FtsY requires functional interaction with inner membrane lipids at a late stage of the signal recognition particle pathway. In addition, an essential lipid-binding α-helix was identified in FtsY of various origins. Theoretical considerations and in vitro studies have suggested that it interacts with acidic lipids, but this notion is not yet fully supported by in vivo experimental evidence. Here, we present an unbiased genetic clue, obtained by serendipity, supporting the involvement of acidic lipids. Utilizing a dominant negative mutant of FtsY (termed NG), which is defective in its functional interaction with lipids, we screened for E. coli genes that suppress the negative dominant phenotype. In addition to several unrelated phenotype-suppressor genes, we identified pgsA, which encodes the enzyme phosphatidylglycerophosphate synthase (PgsA). PgsA is an integral membrane protein that catalyzes the committed step to acidic phospholipid synthesis, and we show that its overexpression increases the contents of cardiolipin and phosphatidylglycerol. Remarkably, expression of PgsA also stabilizes NG and restores its biological function. Collectively, our results strongly support the notion that FtsY functionally interacts with acidic lipids.  相似文献   

9.
Coenzyme Q (CoQ) is a medically valuable compound and a high yielding strain for CoQ will have several benefits for the industrial production of CoQ. To increase the CoQ8 content of E. coli, we blocked the pathway for the synthesis of menaquinone by deleting the menA gene. The blocking of menaquinone pathway increased the CoQ8 content by 81 % in E. coli (ΔmenA). To study the CoQ producing potential of E. coli, we employed previous known increasing strategies for systematic metabolic engineering. These include the supplementation with substrate precursors and the co-expression of rate-limiting genes. The co-expression of dxs-ubiA and the supplementation with substrate precursors such as pyruvate (PYR) and parahydroxybenzoic acid (pHBA) increased the content of CoQ8 in E. coli (ΔmenA) by 125 and 59 %, respectively. Moreover, a 180 % increase in the CoQ8 content in E. coli (ΔmenA) was realized by the combination of the co-expression of dxs-ubiA and the supplementation with PYR and pHBA. All in all, CoQ8 content in E. coli increased 4.06 times by blocking the menaquinone pathway, dxs-ubiA co-expression and the addition of sodium pyruvate and parahydroxybenzoic acid to the medium. Results suggested a synergistic effect among different metabolic engineering strategies.  相似文献   

10.
11.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

12.
All animal cells synthesize sufficient amounts of coenzyme Q (CoQ) and the cells also possess the capacity to metabolize the lipid. The main product of the metabolism is an intact ring with a short carboxylated side chain which glucuronidated in the liver and excreted mainly into the bile (Nakamura et al., Biofactors 9 (1999), 111-119). In other cells CoQ is phosphorylated, transferred into the blood and excreted through the urine. The biosynthesis of this lipid is regulated by nuclear receptors. PPARalpha is not required for the biosynthesis, or induction upon cold exposure, but it is necessary for the elevated CoQ synthesis during peroxisomal induction. RXRalpha is involved in the basal synthesis of CoQ and also in the increased synthesis upon cold treatment but is not required for peroxisomal induction. Dietary CoQ in human appear in the blood and it is taken up by mononuclear but not polynuclear cells. The former cells display a specific phospholipid modification, an increase of arachidonic acid content. In monocytes the CoQ administration leads to a significant decrease of the beta2-integrin CD11b and the complement receptor CD35. CD11b is one of the adhesion factors regulating the entry of these cells into the arterial wall which demonstrates that the anti-atherogenic effect of CoQ is mediated by other mechanisms beside its antioxidant protection.  相似文献   

13.
Addition of purines to the growth medium of Escherichia coli represses synthesis of cytosine deaminase (codA) and enzymes of purine de novo synthesis. After Tn10 mutagenesis, mutants displaying derepressed levels of cytosine deaminase in the presence of hypoxanthine were isolated. One of these had simultaneously acquired resistance to the hypoxanthine analog 6-mercaptopurine. The mutation purR6::Tn10 was shown to affect de novo synthesis of the purine enzymes glutamine phosphoribosylpyrophosphate amidotransferase (purF) and phosphoribosyl glycinamide synthetase (purD). The mutation was mapped by P1 transduction at 36 min on the E. coli linkage map. A plasmid containing the purR region was obtained by complementation of the purR6::Tn10 mutation. By comparing the restriction maps of the cloned fragment and the E. coli chromosome, the purR gene was found to be located very close to the lpp gene (36.3 min).  相似文献   

14.
Abstract We show that thrB -encoded homoserine kinase is required for growth of Escherichia coli K-12 pdxB mutants on minimal glucose medium supplemented with 4-hydroxy-l-threonine (synonym, 3-hydroxyhomoserine) or d-glycolaldehyde. This result is consistent with a model in which 4-phospho-hydroxy-l-threonine (synonym, 3-hydroxyhomoserine phosphate), rather than 4-hydroxy-l-threonine, is an obligatory intermediate in pyridoxal 5'-phosphate biosynthesis. Ring closure using 4-phospho-hydroxy-l-threonine as a substrate would lead to the formation of pyridoxine 5'-phosphate, and not pyridioxine, as the first B6-vitamer synthesized de novo. These considerations suggest that E. coli pyridoxal/pyridoxamine/pyridoxine kinase is not required for the main de novo pathway of pyridoxal 5'-phosphate biosynthesis, and instead plays a role only in the B6-vitamer salvage pathway.  相似文献   

15.
This study presents two lines of genetic evidence consistent with the premise that CheW, a cytoplasmic component of the chemotactic signaling system of Escherichia coli, interacts directly with Tsr, the membrane-bound serine chemoreceptor. (i) We demonstrated phenotypic suppression between 10 missense mutant CheW proteins and six missense mutant Tsr proteins. Most of these mutant proteins had leaky chemotaxis defects and were partially dominant, implying relatively minor functional alterations. Their suppression pattern was allele specific, suggesting that the mutant proteins have compensatory conformational changes at sites of interactive contact. (ii) We isolated five partially dominant CheW mutations and found that four of them were similar or identical to the suppressible CheW mutant proteins. This implies that there are only a few ways in which CheW function can be altered to produce dominant defects and that dominance is mediated through interactions of CheW with Tsr. The amino acid replacements in these mutant proteins were inferred from their DNA sequence changes. The CheW mutations were located in five regularly spaced clusters in the first two-thirds of the protein. The Tsr mutations were located in a highly conserved region in the middle of the cytoplasmic signaling domain. The hydrophobic moments, overall hydrophobicities, and predicted secondary structures of the mutant segments were consistent with the possibility that they are located at the surface of the CheW and Tsr molecules and represent the contact sites between these two proteins.  相似文献   

16.
Coenzyme Q (CoQ) is a component of the mitochondrial respiratory chain which carries out additional membrane functions, such as acting as an antioxidant. The location of CoQ in the membrane and the interaction with the phospholipid bilayer is still a subject of debate. The interaction of CoQ in the oxidized (ubiquinone-10) and reduced (ubiquinol-10) state with membrane model systems of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (Ela2Gro-P-Etn) has been studied by means of differential scanning calorimetry (DSC), 31P-nuclear magnetic resonance (31P-NMR) and small angle X-ray diffraction (SAXD). Ubiquinone-10 did not visibly affect the lamellar gel to lamellar liquid-crystalline phase transition of Ela2Gro-P-Etn, but it clearly perturbed the multicomponent lamellar liquid-crystalline to lamellar gel phase transition of the phospholipid. The perturbation of both transitions was more effective in the presence of ubiquinol-10. A location of CoQ forming head to head aggregates in the center of the Ela2Gro-P-Etn bilayer with the polar rings protruding toward the phospholipid acyl chains is suggested. The formation of such aggregates are compatible with the strong hexagonal HII phase promotion ability found for CoQ. This ability was evidenced by the shifting of the lamellar to hexagonal HII phase transition to lower temperatures and by the appearance of the characteristic hexagonal HII 31P-NMR resonance and SAXD pattern at temperatures at which the pure Ela2Gro-P-Etn is still organized in extended bilayer structures. The influence of CoQ on the thermotropic properties and phase behavior of Ela2Gro-P-Etn is discussed in relation to the role of CoQ in the membrane.  相似文献   

17.
Coenzyme Q is an isoprenylated benzoquinone lipid that functions in respiratory electron transport and as a lipid antioxidant. Dietary supplementation with Q is increasingly used as a therapeutic for treatment of mitochondrial and neurodegenerative diseases, yet little is known regarding the mechanism of its uptake. As opposed to other yeast backgrounds, EG103 strains are unable to import exogenous Q6 to the mitochondria. Furthermore, the distribution of exogenous Q6 among endomembranes suggests an impairment of the membrane traffic at the level of the endocytic pathway. This fact was confirmed after the detection of defects in the incorporation of FM4-64 marker and CPY delivery to the vacuole. A similar effect was demonstrated in double mutant strains in Q6 synthesis and several steps of endocytic process; those cells are unable to uptake exogenous Q6 to the mitochondria and restore the growth on non-fermentable carbon sources. Additional data about the positive effect of peptone presence for exogenous Q6 uptake support the hypothesis that Q6 is transported to mitochondria through an endocytic-based system.  相似文献   

18.
The melibiose carrier from Escherichia coli is a cation-substrate cotransporter that catalyzes the accumulation of galactosides at the expense of H(+), Na(+), or Li(+) electrochemical gradients. Charged residues on transmembrane domains in the amino-terminal portion of this carrier play an important role in the recognition of cations, while the carboxyl portion of the protein seems to be important for sugar recognition. In the present study, we substituted Lys-377 on helix XI with Val. This mutant carrier, K377V, had reduced melibiose transport activity. We subsequently used this mutant for the isolation of functional second-site revertants. Revertant strains showed the additional substitutions of Val or Asn for Asp-59 (helix II), or Leu for Phe-20 (helix I). Isolation of revertant strains where both Lys-377 and Asp-59 are substituted with neutral residues suggested the possibility that a salt bridge exists between helix II and helix XI. To further test this idea, we constructed three additional site-directed mutants: Asp-59-->Lys (D59K), Lys-377-->Asp (K377D), and a double mutant, Asp-59-->Lys/Lys-377-->Asp (D59K/K377D), in which the position of these charges was exchanged. K377D accumulated melibiose only marginally while D59K could not accumulate. However, the D59K/K377D double mutant accumulated melibiose to a modest level although this activity was no longer stimulated by Na(+). We suggest that Asp-59 and Lys-377 interact via a salt bridge that brings helix II and helix XI close to one another in the three-dimensional structure of the carrier.  相似文献   

19.
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) has recently been shown to participate in lignin biosynthesis in herbacious tobacco plants. Here, we demonstrate that CCoAOMT is essential in lignin biosynthesis in woody poplar (Populus tremula x Populus alba) plants. In poplar stems, CCoAOMT was found to be expressed in all lignifying cells including vessel elements and fibers as well as in xylem ray parenchyma cells. Repression of CCoAOMT expression by the antisense approach in transgenic poplar plants caused a significant decrease in total lignin content as detected by both Klason lignin assay and Fourier-transform infrared spectroscopy. The reduction in lignin content was the result of a decrease in both guaiacyl and syringyl lignins as determined by in-source pyrolysis mass spectrometry. Fourier-transform infrared spectroscopy indicated that the reduction in lignin content resulted in a less condensed and less cross-linked lignin structure in wood. Repression of CCoAOMT expression also led to coloration of wood and an elevation of wall-bound p-hydroxybenzoic acid. Taken together, these results indicate that CCoAOMT plays a dominant role in the methylation of the 3-hydroxyl group of caffeoyl CoA, and the CCoAOMT-mediated methylation reaction is essential to channel substrates for 5-methoxylation of hydroxycinnamates. They also suggest that antisense repression of CCoAOMT is an efficient means for genetic engineering of trees with low lignin content.  相似文献   

20.
Evidence for the formation of an unstable intermediate in the synthesis of quinolinate from aspartate and dihydroxyacetone phosphate by Escherichia coli was obtained using toluenized cells of nadA and nadB mutants of this organism and partially purified A and B proteins in dialysis and membrane cone experiments. The results of these experiments indicate that the nadB gene product forms an unstable compound from aspartate in the presence of flavine adenine dinucleotide, and that this compound is then condensed with dihydroxyacetone phosphate to form quinolinate in a reaction catalyzed by the nadA gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号