首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thymidylate kinase from the livers of 18-day-old chick embryos was concentrated 423-fold. The purification procedure included acid precipitation, ammonium sulfate fractionation, gel filtration on Sephadex G-100 and G-75 Super Fine, and ion-exchange chromatography on Diethylaminoethyl Sephadex A-50. This enzyme was found to be very labile but could be stabilized for long periods of time by its substrate (thymidine 5′-monophosphate) in the presence of 2-mercaptoethanol. Enzymes responsible for the formation of thymidine 5′-diphosphate and thymidine 5′-triphosphate, respectively, were separated during fractionation procedures. Thymidylate kinase from chick embryo liver was found to be a single protein having a molecular weight of approximately 46,000, Michaelis constant approximately 8 × 10?5m, and a broad pH optimum between 6.6 and 8.6. A 2–3 mm requirement of Mg2+ above the adenosine 5′-triphosphate concentration was shown to be necessary for maximum enzyme activity. The enzyme appears to be competitively inhibited by thymidine, thymidine 5′-diphosphate, and thymidine 5′-triphosphate and noncompetitively inhibited by adenosine 5′-diphosphate.Thymidylate kinase enzymes isolated from two stages of developing embryonic liver and adult chick liver were shown to be identical.  相似文献   

2.
Diacylglycerol:ATP kinase(EC 2.3.1.-) was highly purified (more than 2000-fold) from rat liver cytosol. The specific activity of the obtained enzyme was about 1.5 μmol phosphatidate formed/mg of protein/min. The purification procedures included ammonium sulfate fractionation, DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and finally affinity chromatography on ATP-agarose. The activities of diacylglycerol:GTP kinase and monoacylglycerol:ATP kinase were copurified throughout the procedures, forming a single peak together with diacylglycerol: ATP kinase. Furthermore, these kinase activities showed a single peak when the highly purified enzyme was analyzed by a sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. The three kinase activities are, therefore, most likely catalyzed by a single enzyme. The kinase showed an apparent molecular weight of 121,000 on gel filtration and sedimented at 5.1 S in a sucrose gradient centrifugation. The apparent Km values were 170 μm for ATP, 540 μm for GTP, and 3.0 μm for diacylglycerol. A number of nucleoside triphosphates and diphosphates competitively inhibited the kinase, in particular the activity utilizing GTP. Among the nucleotides tested, ADP was the most potent inhibitor (the apparent Ki:50 μm for diacylglycerol:ATP kinase and 42 μm for diacylglycerol:GTP kinase). The kinase required Mg2+ and deoxycholate for its activity, and the optimal pH was 8.0–8.5. No dependence on added phospholipids was observed.  相似文献   

3.
A phosphoprotein kinase (EC 2.7.1.37) KIVb, from rat liver nuclei, was purified 75-fold by phosphocellulose chromatography and gel filtration on Sephadex G-200. The enzyme, which has an apparent molecular weight of 55 000, phosphorylates casein and chromatin-bound nonhistone proteins more readily than histones or ribosomal proteins. It exhibits an absolute requirement for divalent cation with optimum activity at 15--20 mM Mg2+. Maximal kinase activity is achieved at 100 mM NaCl. The pH vs. activity curve is biphasic with optima at pH 6.5 and pH 8.0. The Km value for casein is 280 mug/ml and the Km for ATP is 6-10(-6) M. Kinase KIVb phosphorylates numerous nonhistone nuclear proteins as shown by electrophoretic analysis. The addition of kinase KIVb to reaction mixtures containing nonhistone proteins results in the phosphorylation of a spectrum of polypeptides similar to those that are phosphorylated by endogenous nuclear kinases. Nonhistone proteins bound to chromatin appear to be better substrates for KIVb than nonhistones dissociated from chromatin. A comparison of nuclear phosphoproteins phosphorylated either in the intact animal or in vitro (by the addition of kinase KIVb) indicates some differences and some similarities in the patterns of phosphorylation.  相似文献   

4.
5.
6.
Partial purification and properties of acid sphingomyelinase from rat liver   总被引:2,自引:0,他引:2  
Acid sphingomyelinase was purified approximately 5,200-fold from the mitochondria-lysosome-enriched particles of rat liver by sequential chromatography on DEAE-cellulose, octyl-Sepharose, Sephacryl S-300, Concanavalin A-Sepharose, and CM-cellulose. The specific activity of this highly purified enzyme was 3.2 mmol per hr per mg protein. The enzyme was active against 2-hexadecanoylamino-4-nitrophenylphosphorylcholine, but bis-4-methylumbelliferyl-phosphate and bis-p-nitrophenyl-phosphate were poor substrates. The preparation was free of Mg2+-dependent neutral sphingomyelinase and eight lysosomal enzymes except for the trace amount of acid phosphatase and beta-galactosidase. Apparent molecular weight of the enzyme was 200,000, estimated by Sephadex G-200 filtration in 0.1% Triton X-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed three major bands corresponding to molecular weights of 45,600, 44,500, and 40,000 with several minor bands. Characterization of the enzyme revealed almost the same properties as those of human tissues reported by other investigators, including pH optimum, requirement of Triton X-100, effects of metal divalent cations, phosphate ion, EDTA, some thiol blocking reagents, and amphophilic drugs.  相似文献   

7.
Diglyceride kinase (diacylglycerol kinase, E.C. 2.7.1.-), an enzyme localized in the inner membrane of Escherichia coli, has been purified about 600-fold. The purified enzyme exhibits an absolute requirement for magnesium ion; its activity toward both lipid and nucleotide substrates is stimulated by diphosphatidylglycerol or other phospholipids. Adenine nucleotides are much better substrates for the enzyme than are other purine or pyrimidine nucleotides. The purified enzyme preparation catalyzes the phosphorylation of a number of lipids, including ceramide and several ceramide and diacylglycerol-like analogs. The broad lipid substrate specificity of diglyceride kinase suggests that this enzyme may function in vivo for the phosphorylation of an acceptor other than diacylglycerol.  相似文献   

8.
Using ion-exchange chromatography and gel filtration, cGMP-dependent protein kinase was purified from prawn tissues 220-fold with a yield of activity of 12%. The apparent Ka values for cGMP, cAMP and 8-Br-cGMP are 1 . 10(-7), 5 . 10(-6) and 5 . 10(-8) M, respectively; the apparent Km values for ATP in the presence of cGMP is 9 . 10(-6) M. The cGMP-stimulated protein kinase activity was observed only in the presence of SH-compounds and high Mg2+ concentrations (500-100 mM). The protein kinase demonstrated a broad pH optimum wih a maximum at pH 6.8-7.2. The elution volume of the enzyme during gel filtration corresponded to a globular protein with molecular weight of 140,000.  相似文献   

9.
Ethanolamine kinase was purified 60-fold by fractionation with ammonium sulfate, freeze-thawing, and gel filtration from a 100,000g supernatant from spinach leaf. The 100,00g supernatant preparation was stable for weeks, but the partially purified preparation lost half of the ethanolamine kinase activity in 10–14 days at 0–4 °C or ?20 °C. A molecular weight of 110,000 was estimated by gel filtration on Sephadex G-200. The reaction required ethanolamine (Km, 42 μm), MgATP (Km, 63 μm), and free magnesium ions. The enzyme was inhibited by MgATP, with an apparent Ki of 6.7 mm. Ethanolamine kinase was inhibited by calcium (in the presence of magnesium) and o-phenanthroline. EDTA above 0.9 mm inhibited the formation of phosphorylethanolamine and EGTA stimulated at low concentrations (0.4-0.9 mm) and inhibited at 1.8 mm. Ethanolamine kinase was inhibited by monomethylethanolamine and dimethylethanolamine, but not by choline (5 mm). The ethanolamine kinase and choline kinase activities of the 100,000g supernatant preparation could be separated by gel electrophoresis  相似文献   

10.
11.
Purification and regulation of mevalonate kinase from rat liver   总被引:2,自引:0,他引:2  
Mevalonate kinase may play a key role in regulating cholesterol biosynthesis because its activity may be regulated via feedback inhibition by intermediates in the cholesterol biosynthetic pathway. To study the regulation of mevalonate kinase, the enzyme was purified to homogeneity from rat liver, and monospecific antibody against mevalonate kinase was prepared. The purified mevalonate kinase had a dimeric structure composed of identical subunits, and the Mr of the enzyme determined by gel chromatography was 86,000. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the subunit Mr was 39,900. The pI for mevalonate kinate was 6.2. The levels of mevalonate kinase protein and enzyme activity were determined in the livers of rats treated with either cholesterol-lowering agents (cholestyramine, pravastatin, and lovastatin) or with dietary modifications. Diets containing cholestyramine alone or cholestyramine and either pravastatin or lovastatin increased mevalonate kinase activity 3-6-fold. Mevalonate kinase activity decreased approximately 50% in rats treated with diets containing either 5% cholesterol or 5% cholesterol and 0.5% cholic acid. Fasting did not significantly change mevalonate kinase activity. The amount of mevalonate kinase protein in the liver was quantitated using immunoblots, and the changes in the levels of kinase activity induced by either drug treatment or by cholesterol feeding were correlated with similar changes in the levels of mevalonate kinase protein. Therefore, under these experimental conditions, mevalonate kinase activity in the liver was regulated principally by changes in the rates of enzyme synthesis and degradation.  相似文献   

12.
Monomethylethanolamine (MEA) kinase and dimethylethanolamine (DEA) kinase activities were purified 950 and 750 fold respectively from rat liver by conventional procedures. Certain properties of the partially purified enzyme preparation suggest that they are different from both choline kinase activity and ethanolamine kinase activity and differ from one another. This is based upon the following observations: 1. The heat stabilities of MEA kinase and DEA kinase activities are significantly different from one another and are different from the stability of choline kinase and ethanolamine kinase activities. 2. K+ in the presence of Mg2+ increases MEA kinase activity by 100% but has no effect on DEA kinase activity. 3. Different Ki values and the types of inhibition by several structurally related amino alcohols were found for MEA kinase and DEA kinase activities. 4. The purification fold of MEA kinase and DEA kinase are different from each other and from that of choline kinase and ethanolamine kinase.  相似文献   

13.
The activity of myocardial adenosine kinase (E.N. 2.7.1.20) in a number of species was assayed. Rat heart contained the highest specific activity. From this source adenosine kinase was purified in a simple way 80-fold, until it was free of adenosine deaminase activity. A molecular weight of about 39 000 was measured. NSC 113939 (1), NSC 113940 and 8-azaadenosine inhibited myocardial adenosine kinase. Dipyridamole stimulated the enzyme at high adenosine levels, and inhibited at low substrate concentrations. A number of divalent cations could (partially) substitute for Mg2+. The optimal concentration of MgCl2 or MnCl2 was about 0.5 mM; concentrations exceeding 1 mM inhibited severely. An apparent Km for ATP of 0.1 mM was measured, whereas an apparent Km for adenosine of 0.5 muM was was found. The latter increased to 3.3 muM, when dipyridamole was added. Replacement of ATP by GTB or ITP increased the activity, and UTP and CTP were inferior as a phosphate donor.  相似文献   

14.
1. A cyclic 3',5'-AMP-independent protein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) from rat liver cytosol was partially purified and characterized. Purification by (NH4)2SO4 precipitation, DEAE-cellulose, Bio Gel A-0.5 m and cellulose phosphate chromatography increased the specific activity about 700-fold. 2. An endogenous protein substrate was closely associated with the protein kinase and was not separable from this enzyme up to the cellulose phosphate stage. After phosphorylation, chromatography with Bio Gel A-0.5 m partially separated this endogenous phosphoprotein from the enzyme activity; this dissociation had no apparent effect on kinase activity with casein or phosvitin as substrates, or on the apparent molecular weight of the enzyme (approx. 158,000). 3. This protein kinase with casein, phosvitin, or the endogenous substrate was totally insensitive to the thiol reagents, p-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), iodoacetamide, and N-ethylmaleimide. The enzyme was also unaffected by cyclic 3',5'-AMP, heat-stable protein kinase inhibitor, and the regulatory subunit of a cyclic 3',5'-AMP-dependent protein kinase.  相似文献   

15.
Mevalonate kinase activity was demonstrated in acetone powder extracts from Agave americana leaves, flowers and scape. ATP was the most effective phosphate donor. The enzyme had an optimum pH of 7.9 in Tris-HCl buffer. Dialysis decreased the ability to phosphorylate mevalonic acid (MVA). Partially purified mevalonate kinase reached maximum activity in the presence of 2 mM Mn2+ or 6–8 mM Mg2+. Higher concentrations of Mn2+ were inhibitory, whereas higher concentrations of Mg2+ produced only a small decrease in the activity. The amount of mevalonate-5-phosphate (MVAP) formed depended on protein concentration and incubation time. During short incubations, the MVAP formed increased as protein concentration rose, whereas during prolonged incubations (1–6 hr), there was a decrease in the MVAP formed when a certain amount of protein was exceeded. It is suggested that MVAP formed was hydrolysed by a phosphatase present in the extracts. This interfering activity was eliminated when mevalonate kinase is partially purified. The apparent Km values of the enzyme from leaves were 0.05 mM for MVA and 0. 14 mM for ATP. Similar Km values are obtained with partially purified mevalonate kinase. The enzyme was purified by ammonium sulphate precipitation, Sephadex G-100 filtration and DEAE-Sephadex A-50 fractionation.  相似文献   

16.
Polyspecific xenoantisera specific for embryonic chick liver cells have been used to develop an assay for the detection of embryonic chick liver adhesion molecules (LAM). The neutralization of the antiaggregation immune sera and subsequent semiquantitative assessment of the remaining activity is the basis for this assay. Embryonic chick liver membrane proteins have been solubilized using a number of detergents and the LAM activity has been partially purified using sucrose-gradient sedimentation, isoelectric focusing, gel filtration, affinity chromatography, and preparative polyacrylamide gel electrophoresis procedures. The isolated LAM appears to be an intrinsic, trypsin-resistant, membrane glycoprotein of approximately 65,000 daltons. The 65K preparation of LAM is an effective immunogen in generating an aggregation blocking xenoantiserum specific for embryonic chick liver cells. Purification of LAM to homogeneity has been hampered by an apparent lability by self-association or loss by adsorption of the more purified LAM antigen(s).  相似文献   

17.
18.
Microsomal phosphatidate phosphohydrolase (phosphatidate phosphatase EC 3.1.3.4) was solubilized and fractionated to yield at least two distinct enzymatically active fractions. One, denoted FA, was non-specific, had a relatively high Km for phosphatidic acid and was insensitive to inhibition by diacylglycerol. The second fraction, FB, was specific for phosphatidates, had a low Km, and was inhibited, non-competitively, by diacylglycerol. FA exhibited a sigmoid substrate-activity curve. The isolated FB aggregated to particles of about 10(6) in the absence of salts and could be dissociated by the addition of monovalent cations at ionic strength 0.4-0.6 to about 2-10(5) daltons and thereby doubled its activity. Dissociation was time- and temperature-dependent. F- was inhibitory. Divalent ions were not required for the activity of FA or FB and inhibited at concentrations exceeding 1 mM.  相似文献   

19.
《Phytochemistry》1987,26(11):2929-2935
Partial purification of a protein kinase with a dependence on micromolar concentrations of free calcium has been achieved from seedlings of Amaranthus tricolor. The enzyme has a Mr of 77 600 as determined by gel filtration and 84 500 by SDS-PAGE analysis. Interaction of the enzyme with membranes (inside-out erythrocyte vesicles) is regulated by calcium, a characteristic of animal protein kinase C. Phospholipid and diolein activation of the enzyme is markedly dependent on the phospholipid used and on both calcium and phospholipid concentration. Km values for Ca2+ in the absence of phospholipid was 20–40 μM and in the presence of phosphatidylserine 5–10 μM. Diolein plus phosphatidylserine lowered the Km to < 1.5 μM. The best activation was achieved at 1OOμM calcium with 40μg/ml phosphatidylserine and 8μg/ml diolein. These properties indicate a protein kinase C type enzyme. The plant enzyme reacted with antiserum directed against the regulatory domain of bovine brain protein kinase C in an immunoblot experiment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号