首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
败血症大鼠肝细胞核Ca^2+转运功能的改变   总被引:9,自引:0,他引:9  
王培勇  叶赤 《生理学报》1997,49(2):191-196
本实验观察败血症时肝细胞核钙转运的变化。早期败血症(结扎盲肠及穿刺后,9h)大鼠肝细胞和肝细胞核钙含量分别增加20%和36%(P〈0.05)。败血症大鼠肝细胞核Ca^2+-ATPase活性增加94%(P〈0.01),核^45Ca^2+转运显著增强(增加32%,P〈0.01)。核^45Ca^2+转运与Ca^2+-ATPase活性呈明显正相关(r=0.914,P〈0.01)。加入钙调素显著刺激而加入钙  相似文献   

2.
研究不同频率慢性电刺激(CES)后兔膈肌肌浆网(SR)Ca2+-ATPase活性以及SR Ca2+摄取-释放动力学对不同频率CES的适应性变化。建立不同频率CES组;用定磷法测定SR Ca2+-ATPase活性;用Fura-2荧光法测定SR Ca2+摄取-释放动力学。与对照组比较,慢性低频电刺激10 Hz和20Hz组的SR Ca2+-ATPase活性明显降低(P<0.01),Ca2+释放-摄取动力学也显著降低(P<0.01);慢性高频电刺激50 Hz和100Hz组的SR Ca2+-ATPase活性则显著升高(P<0.01),Ca2+释放-摄取动力学亦明显升高(P<0.01)。实验提示,CES后不同频率CES导致膈肌SRCa2+-ATPase、Ca2+摄取-释放动力学产生不同的适应性变化;对不同功能状态的膈肌应用不同频谱的慢性电刺激可能具有重要的临床意义。  相似文献   

3.
用TAB法测定了三尖杉酯碱的膜脂氧化效应;用纳秒荧光偏振技术研究了氧化膜脂对DPH标记大鼠心肌肌质网膜脂、ANM标记心肌肌质网Ca^2+-ATPa功能及磷酸化微区运动状态的影响。随膜脂中氧化磷脂的增加,肌质网膜脂双层的微粘度增加,磷脂分子摆动角减小;DPH的荧光强度减弱,荧光寿命缩短。Ca^2+-ATPase的ATP水解活性降低。ANM标记Ca^2+-ATPase磷酸化微区的r(t)曲线半衰期减至  相似文献   

4.
花生幼苗下胚轴质膜Ca2+-ATP酶及其对低温胁迫的反应   总被引:1,自引:0,他引:1  
经6%-12%DextranT70密度梯度离心,获得了纯度较高的7d龄花生幼苗下胚轴质膜制剂,质膜Ca^2+-ATPase在反应系统不存在Mg^2+时,可正常表现水解ATP的活性,但此活性明显低于Mg^2+激活的ATPase,Ca^2+-ATPase不受Na3VO4抑制,不被K^+激活,而被Cl^-抑制,Ca^2+-ATPase的最适,pH不同于Mg^2+激活的ATPase,低温胁迫显著提高质膜C  相似文献   

5.
水分胁迫下棉花根和下胚轴质膜H^+-ATPase和Ca^2+-ATPase活力,表现Km值以及Vmax降低。-0.3MPa和-1.1MPa胁迫下质膜AT-Pase活力随时间延长分别呈“V”字形变化和下降趋势。钙螯合剂、CaM抑制剂对棉花根和下胚轴质膜ATPase活性有明显的抑制效应,抑制程度为-1.1MPa大于-0.3MPa大于对照。  相似文献   

6.
牛磺酸对损伤的心肌肌膜ATPase活性影响的研究   总被引:7,自引:0,他引:7  
本研究以异丙肾上腺素(Isoproternol,Iso.)诱导的大鼠心肌损伤为模型,观察牛磺酸(Taurine,Tau)对损伤心肌肌膜上N_a ̄+—K_- ̄+ATPase、C_a ̄(2+)-ATPase、M_g ̄(2+)ATPASE活性的影响。按Dahalla方法分离及鉴定心肌肌膜同时分别测定三种ATPase活性,结果:Iso组,与Tau+Iso组的三种ATPase活性明显低于对照组与Tau组,且同时Tau+Iso组明显高于Iso组但对照组与Tau组之间差别无显著性。结果提示:牛磺酸能提高异丙肾上腺素诱导心肌损伤的心肌膜ATPase活性,可能通过其保护心肌肌膜的结构及功能而实现的。  相似文献   

7.
稀土离子对CaM及Ca2+-Mg2+-ATPase活力及CD研究   总被引:4,自引:0,他引:4  
研究了稀土离子(Ln3+)对钙调蛋白(CaM)调控的Ca2+-Mg2+-ATPase的活力影响。结果表明,在CaM和Ca2+-Mg2+-ATPase的体系中,一些Ln3+(La3+、Gd3+)对由CaM调节的Ca2+-Mg2+-ATPase的活力影响呈现双相效应,即Ln3+在低浓度时,能提高激活Ca2+-Mg2+-ATPase的水解活力;在高浓度时,则抑制CaM调节Ca2+-Mg2+-ATPase活力的能力;少数Ln3+(Sm3+)仅表现出抑制效应。在无CaM的Ca2+-Mg2+-ATPase体系中,高浓度的Ln3+抑制Ca2+-Mg2+-ATPase的基础活力。结合圆二色(CD)谱信息对Ln3+和CaM相互作用的分子机制进行了初步的探讨。  相似文献   

8.
用TBA法测定了三尖杉酯碱的膜脂氧化效应;用纳秒荧光偏振技术研究了氧化膜脂对DPH标记大鼠心肌肌质网膜脂、ANM标记心肌肌质网Ca2+-ATPa功能及磷酸化微区运动状态的影响。随膜脂中氧化磷脂的增加,肌质网膜脂双层的微粘度增加,磷脂分子摆动角减小:DPH的荧光强度减弱,荧光寿命缩短。Ca2+-ATPase的ATP水解活性降低。ANM标记Ca2+-ATPase磷酸化微区的r(t)曲线半衰期减至68±4nsec。结果提示,膜脂中氧化磷脂的含量影响膜脂双层的流动性及Ca2+-ATPase的ATP水解活性和磷酸化微区的微细结构。  相似文献   

9.
本课题观察了低氧及血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)对分离培养家兔肺内小动脉平滑肌细胞(PASM-Cs)膜Ca2+-ATPase活力的影响,同时用钙通道阻断剂维拉帕米(verapamil,VP)进行干预,进一步了解细胞内钙与Ca2+-ATPase活力的关系。结果表明:PASMCs膜Ca2+-ATPase活力对低氧具有短暂的耐受性,随低氧时间延长,Ca2+-ATPase活力呈时间依赖性抑制;低氧、ANGⅡ均能抑制Ca2+-ATPase活力(P<0.01)低氧+AⅡ对Ca2+-ATPase活力的抑制具叠加效应(P<0.05);VP可逆转低氧、AngⅡ、低氧+AngⅡ对Ca2+-ATPase活力的抑制(P<0.01)。结果提示:低氧,ANGⅡ可通过抑制肺血管平滑肌细胞膜Ca2+-ATPase活力而可能削弱肺血管平滑肌舒张功能也可能是低氧性肺动脉高压(HPH)形成的原因之一。  相似文献   

10.
杨青  唐岫 《生理学报》1996,48(2):141-148
本研究用结扎盲肠及穿刺(CLP)引起败血症。结果证明:大鼠心肌钙通道在早期败血症(ES,CLP后9h)时由心肌轻型囊泡向心肌肌膜转运增多;在晚期败血症(LS,CLP后18h)时由心肌肌膜向心肌轻型囊泡转运增多。败血症时大鼠心肌肌膜和心肌轻型囊泡钙通道的再分布与cAMP依赖性蛋白激酶(PKA),Ca(2+)/钙调素依赖性蛋白激酶(PKM)和蛋白激酶C(PKC)磷酸化作用无关。败血症时大鼠心肌肌膜和心肌轻型囊泡上肾上腺能β-受体、M-胆碱受体和Na+/K+ATPase的变化规律和钙通道的一样,它们可能是败血症时的一种非特异性变化。  相似文献   

11.
E G Kranias  F Mandel  T Wang  A Schwartz 《Biochemistry》1980,19(23):5434-5439
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP) dependent protein kinase on a 22 000-dalton protein. Phosphorylation enhances the initial rate of Ca2+ uptake and Ca2+-ATPase activity. To determine the molecular mechanism by which phosphorylation regulates the calcium pump in SR, we examined the effect of cAMP-dependent protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Cardiac sarcoplasmic reticulum was preincubated with cAMP and cAMP-dependent protein kinse in the presence (phosphorylated SR) and absence (control) of adenosine 5'-triphosphate (ATP). Control and phosphorylated SR were subsequently assayed for formation (4-200 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase in media containing 100 microM [ATP] and various free [Ca2+]. cAMP-dependent phosphorylation of SR resulted in pronounced stimulation of initial rates and levels of E approximately P formed at low free [Ca2+] (less than or equal to 7 microM), but the effect was less at high free Ca2+ (greater than or equal to 10 microM). This stimulation was associated with a decrease in the dissociation constant for Ca2+ binding and a possible increase in Ca2+ sites. The observed rate constant for E approximately P formation of calcium-preincubated SR was not significantly altered by phosphorylation. Phosphorylation also increased the initial rate of E approximately P decomposition. These findings indicate that phosphorylation of cardiac SR by cAMP-dependent protein kinase regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the calcium pump observed at steady state.  相似文献   

12.
Calmodulin (CaM) and Ca(2+)/CaM-dependent protein kinase II (CaM kinase) are tightly associated with cardiac sarcoplasmic reticulum (SR) and are implicated in the regulation of transmembrane Ca(2+) cycling. In order to assess the importance of membrane-associated CaM in modulating the Ca(2+) pump (Ca(2+)-ATPase) function of SR, the present study investigated the effects of a synthetic, high affinity CaM-binding peptide (CaM BP; amino acid sequence, LKWKKLLKLLKKLLKLG) on the ATP-energized Ca(2+) uptake, Ca(2+)-stimulated ATP hydrolysis, and CaM kinase-mediated protein phosphorylation in rabbit cardiac SR vesicles. The results revealed a strong concentration-dependent inhibitory action of CaM BP on Ca(2+) uptake and Ca(2+)-ATPase activities of SR (50% inhibition at approximately 2-3 microM CaM BP). The inhibition, which followed the association of CaM BP with its SR target(s), was of rapid onset (manifested within 30 s) and was accompanied by a decrease in V(max) of Ca(2+) uptake, unaltered K(0.5) for Ca(2+) activation of Ca(2+) transport, and a 10-fold decrease in the apparent affinity of the Ca(2+)-ATPase for its substrate, ATP. Thus, the mechanism of inhibition involved alterations at the catalytic site but not the Ca(2+)-binding sites of the Ca(2+)-ATPase. Endogenous CaM kinase-mediated phosphorylation of Ca(2+)-ATPase, phospholamban, and ryanodine receptor-Ca(2+) release channel was also strongly inhibited by CaM BP. The inhibitory action of CaM BP on SR Ca(2+) pump function and protein phosphorylation was fully reversed by exogenous CaM (1-3 microM). A peptide inhibitor of CaM kinase markedly attenuated the ability of CaM to reverse CaM BP-mediated inhibition of Ca(2+) transport. These findings suggest a critical role for membrane-bound CaM in controlling the velocity of Ca(2+) pumping in native cardiac SR. Consistent with its ability to inhibit SR Ca(2+) pump function, CaM BP (1-2.5 microM) caused marked depression of contractility and diastolic dysfunction in isolated perfused, spontaneously beating rabbit heart preparations. Full or partial recovery of contractile function occurred gradually following withdrawal of CaM BP from the perfusate, presumably due to slow dissociation of CaM BP from its target sites promoted by endogenous cytosolic CaM.  相似文献   

13.
Gingerol, isolated as a potent cardiotonic agent from the rhizome of ginger, stimulated the Ca2+-pumping activity of fragmented sarcoplasmic reticulum (SR) prepared from rabbit skeletal and dog cardiac muscles. The extravesicular Ca2+ concentrations of the heavy fraction of the fragmented SR (HSR) were measured directly with a Ca2+ electrode to examine the effect of gingerol on the SR. Gingerol (3-30 microM) accelerated the Ca2+-pumping rate of skeletal and cardiac SR in a concentration-dependent manner. The rate of 45Ca2+ uptake of HSR was also increased markedly by 30 microM gingerol without affecting the 45Ca2+ efflux from HSR. Furthermore, gingerol activated Ca2+-ATPase activities of skeletal and cardiac SR (EC50, 4 microM). The activation of SR Ca2+-ATPase activity by gingerol (30 microM) was completely reversed by 100-fold dilution with the fresh saline solution. Kinetic analysis of activating effects of gingerol suggests that the activation of SR Ca2+-ATPase is uncompetitive and competitive with respect to Mg . ATP at concentrations of 0.2-0.5 mM and above 1 mM, respectively. Kinetic analysis also suggests that the activation by gingerol is mixed-type with respect to free Ca2+ and this enzyme is activated probably due to the acceleration of enzyme-substrate complex breakdown. Gingerol had no significant effect on sarcolemmal Ca2+-ATPase, myosin Ca2+-ATPase, actin-activated myosin ATPase and cAMP-phosphodiesterase activities, indicating that the effect of gingerol is rather specific to SR Ca2+-ATPase activity. Gingerol may provide a valuable chemical tool for studies aimed at clarifying the regulatory mechanisms of SR Ca2+-pumping systems and the causal relationship between the Ca2+-pumping activity of SR and muscle contractility.  相似文献   

14.
H W Kim  Y S Ch  H R Lee  S Y Park  Y H Kim 《Life sciences》2001,70(4):367-379
Diabetic cardiomyopathy has been suggested to be caused by abnormal intracellular Ca2+ homeostasis in the myocardium, which is partly due to a defect in calcium transport by the cardiac sarcoplasmic reticulum (SR). In the present study, the underlying mechanism for this functional derangement was investigated with respect to SR Ca2+-ATPase and phospholamban (the inhibitor of SR Ca2+-ATPase). The maximal Ca2+ uptake and the affinity of Ca2+-ATPase for Ca2+ were decreased, and exogenous phosphorylation level of phospholamban was higher in streptozotocin-induced diabetic rat SR. Levels of both mRNA and protein of phospholamban were significantly increased in the diabetic hearts, whereas those of SR Ca2+-ATPase were significantly decreased. Consequently, the relative phospholamban/Ca2+-ATPase ratio was 1.88 in the diabetic hearts, and these changes were correlated with changes in the rates of SR Ca2+ uptake. However, phosphatase pretreatment of phospholamban for dephosphorylation of the sites phosphorylated in vivo did not change the levels of subsequent phospholamban phosphorylation in either control or diabetic rat hearts. The above data indicated that the increased phospholamban phosphorylation was not due to autonomic dysfunction but possibly due to increased phospholamban expression. These findings suggest that reduction of the SR Ca2+-ATPase level would contribute to decreased rates of SR Ca2+ uptake and that this function is further impaired by the enhanced inhibition by phospholamban due to its increased expression in the diabetic heart.  相似文献   

15.
Recent studies have demonstrated phosphorylation of the cardiac and slow-twitch muscle isoform (SERCA2a) of the sarcoplasmic reticulum (SR) Ca2+-ATPase (at Ser38) by a membrane-associated Ca2+/calmodulin-dependent protein kinase (CaM kinase). Analysis of the functional consequence of Ca2+-ATPase phosphorylation in the native SR membranes, however, is complicated by the concurrent phosphorylation of the SR proteins phospholamban (PLN) which stimulates Ca2+ sequestration by the Ca2+-ATPase, and the ryanodine receptor-Ca2+ release channel (RYR-CRC) which likely augments Ca2+ release from the SR. In the present study, we achieved selective phosphorylation of the Ca2+-ATPase by endogenous CaM kinase in isolated rabbit cardiac SR vesicles utilizing a PLN monoclonal antibody (PLN AB) which inhibits PLN phosphorylation, and the RYR-CRC blocking drug, ruthenium red, which inhibits phosphorylation of RYR-CRC. Analysis of the Ca2+ concentration-dependence of ATP-energized Ca2+ uptake by SR showed that endogenous CaM kinase mediated phosphorylation of the Ca2+-ATPase, in the absence of PLN and/or RYR-CRC phosphorylation, results in a significant increase (approximately 50-70%) in the Vmax of Ca2+ sequestration without any change in the k0.5 for Ca2+ activation of the Ca2+ transport rate. On the other hand, treatment of SR with PLN AB (which mimics the effect of PLN phosphorylation by uncoupling Ca2+-ATPase from PLN) resulted in approximately 2-fold decrease in k0.5 for Ca2+ without any change in Vmax of Ca2+ sequestration. These findings suggest that, besides PLN phosphorylation, direct phosphorylation of the Ca2+-ATPase by SR-associated CaM kinase serves to enhance the speed of cardiac muscle relaxation.  相似文献   

16.
Effects of exercise of varying duration on sarcoplasmic reticulum function   总被引:5,自引:0,他引:5  
Sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+-Mg2+-ATPase activity were examined in muscle homogenates and the purified SR fraction of the superficial and deep fibers of the gastrocnemius and vastus muscles of the rat after treadmill runs of 20 or 45 min or to exhaustion (avg time to exhaustion 140 min). Vesicle intactness and cross-contamination of isolated SR were estimated using a calcium ionophore and mitochondrial and sarcolemmal marker enzymes, respectively. Present findings confirm previously reported fiber-type specific depression in the initial rate and maximum capacity of Ca2+ uptake and altered ATPase activity after exercise. Depression of the Ca2+-stimulated ATPase activity of the enzyme was evident after greater than or equal to 20 min of exercise in SR isolated from the deep fibers of these muscles. The lowered ATPase activity was followed by a depression in the initial rate of Ca2+ uptake in both muscle homogenates and isolated SR fractions after greater than or equal to 45 min of exercise. Maximum Ca2+ uptake capacity was lower in isolated SR only after exhaustive exercise. Ca2+ uptake and Ca2+-sensitive ATPase activity were not affected at any duration of exercise in SR isolated from superficial fibers of these muscles; however, the Mg2+-dependent ATPase activity was increased after 45 min and exhaustive exercise bouts. The alterations in SR function could not be attributed to disrupted vesicles or differential contamination in the SR from exercise groups and were reinforced by similar changes in Ca2+ uptake in crude muscle homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase on a 22,000-dalton protein, Phosphorylation is associated with an increase in both the initial rate of Ca2+ uptake and the Ca(2+)-ATPase activity which is partially due to an increase in the affinity of the Ca(2+)-Mg(2+)-ATPase (E) of sarcoplasmic reticulum for calcium. In this study, the effect of cAMP-dependent protein kinase phosphorylation on the binding of calcium to the SR and on the dissociation of calcium from the SR was examined. The rate of dissociation of the E x Ca2 was measured directly and was not found to be significantly altered by cAMP-dependent protein kinase phosphorylation. Since the affinity of the enzyme for Ca2+ is equal to the ratio of the on and off rates of calcium, these results demonstrate that the observed change in affinity must be due to an increase in the rate of calcium binding to the Ca(2+)-Mg(2+)-ATPase of SR. In addition, an increase in the degree of positive cooperativity between the two calcium binding sites was associated with protein kinase phosphorylation.  相似文献   

18.
The Ca2(+)-ATPase in cardiac sarcoplasmic reticulum (SR) is under regulation by phospholamban, an oligomeric proteolipid. To determine the molecular mechanism by which phospholamban regulates the Ca2(+)-ATPase, a reconstitution system was developed, using a freeze-thaw sonication procedure. The best rates of Ca2+ uptake (700 nmol/min/mg reconstituted vesicles compared with 800 nmol/min/mg SR vesicles) were observed when cholate and phosphatidylcholine were used at a ratio of cholate/phosphatidylcholine/Ca2(+)-ATPase of 2:80:1. The EC50 values for Ca2+ were 0.05 microM for both Ca2+ uptake and Ca2(+)-ATPase activity in the reconstituted vesicles compared with 0.63 microM Ca2+ in native SR vesicles. Inclusion of phospholamban in the reconstituted vesicles was associated with a significant inhibition of the initial rates of Ca2+ uptake at pCa 6.0. However, phosphorylation of phospholamban by the catalytic subunit of the cAMP-dependent protein kinase reversed the inhibitory effect on the Ca2+ pump. Similar findings were observed when a peptide, corresponding to amino acids 1-25 of phospholamban, was used. These findings indicate that phospholamban is an inhibitor of the Ca2(+)-ATPase in cardiac SR and phosphorylation of phospholamban relieves this inhibition. The mechanism by which phospholamban inhibits the Ca2+ pump is unknown, but our findings with the synthetic peptide suggest that a direct interaction between the Ca2(+)-ATPase and the hydrophilic portion of phospholamban may be one of the mechanisms for regulation.  相似文献   

19.
Phospholamban is the regulator of the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum (SR). The mechanism of regulation appears to involve inhibition by dephosphorylated phospholamban, and phosphorylation may relieve this inhibition. Fast-twitch skeletal muscle SR does not contain phospholamban, and it is not known whether the Ca(2+)-ATPase isoform from this muscle may be also subject to regulation by phospholamban in a similar manner as the cardiac isoform. To determine this we reconstituted the skeletal isoform of the SR Ca(2+)-ATPase with phospholamban in phosphatidylcholine proteoliposomes. Inclusion of phospholamban was associated with significant inhibition of the initial rates of Ca2+ uptake at pCa 6.0, and phosphorylation of phospholamban by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effects on the Ca2+ pump. Similar effects of phospholamban were also observed using phosphatidylcholine:phosphatidylserine proteoliposomes, in which the Ca2+ pump was activated by the negatively charged phospholipids (24). Regulation of the Ca(2+)-ATPase appeared to involve binding with the hydrophilic portion of phospholamban, as evidenced by cross-linking experiments, using a synthetic peptide that corresponded to amino acids 1-25 of phospholamban. These findings suggest that the fast-twitch isoform of the SR Ca(2+)-ATPase may be also regulated by phospholamban, although this regulator is not expressed in fast-twitch skeletal muscles.  相似文献   

20.
A 50% decrease in both the initial rate and the total capacity of Ca2+ uptake by the sarcoplasmic reticulum (SR) occurred 2 days after the onset of chronic (10 Hz) nerve stimulation in rabbit fast-twitch muscle. Prolonged stimulation (up to 28 days) did not lead to further decreases. This reduction, which was detected in muscle homogenates using a Ca2+-sensitive electrode, was reversible after 6 days cessation of stimulation and was not accompanied by changes in the immunochemically (ELISA) determined tissue level or isozyme characteristics of the SR Ca2+-ATPase protein. However, as measured in isolated SR, it correlated with a reduced specific activity of the Ca2+-ATPase. Kinetic analyses demonstrated that affinities of the SR Ca2+-ATPase towards Ca2+ and ATP were unaltered. Positive cooperativity for Ca2+ binding (h = 1.5) was maintained. However, a 50% decrease in Ca2+-dependent phosphoprotein formation indicated the presence of inactive forms of Ca2+-ATPase in stimulated muscle. The reduced phosphorylation of the enzyme was accompanied by an approximately 50% lowered binding of fluorescein isothiocyanate, a competitor at the ATP-binding site. In view of the unaltered affinity for ATP, this finding suggests that active Ca2+-ATPase molecules coexist in stimulated muscle with inactive enzyme molecules, the latter displaying altered properties at the nucleotide-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号