首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of thromboxane B2 was studied in the rabbit. The aim of the study was to identify metabolites in blood and urine that might serve as parameters for monitoring thromboxane production in vivo. [5,6,8,9,11,12,14,15-3H8]-Thromboxane B2 was administered by i.v. injection to rabbits, and blood samples and urine were collected with brief intervals. The metabolic profiles were visualized by two-dimensional thin layer chromatography and autoradiography, and the structures of five major metabolites were determined using chromatographic and mass spectrometric methods. In urine the major metabolites were identified as 11-dehydro-TXB2 and 2,3,4,5-tetranor-TXB1, and other prominent products were 11-dehydro-2,3,4,5-tetranor-TXB1, 2,3-dinor-TXB1 and 2,3-dinor-TXB2. In the circulation, TXB2 was found to disappear rapidly. The first major metabolite to appear was 11-dehydro-TXB2, which also remained a prominent product in blood for the remainder of the experiment (90 min). With time, the profile of circulating products became closely similar to that in urine. TXB2 was not converted into 11-dehydro-TXB2 by blood cells or plasma. The dehydrogenase catalyzing its formation was tissue bound and was found to have a widespread occurrence: the highest conversion was found in lung, kidney, stomach and liver. The results of the present study suggest that 11-dehydro-TXB2 may be a suitable parameter for monitoring thromboxane production in vivo in the rabbit in blood as well as urinary samples, and possibly also several tissues. This was also demonstrated in comparative studies using radioimmunoassays for TXB2 and 11-dehydro-TXB2.  相似文献   

2.
11-Dehydrothromboxane B2 is one of the major enzymatic metabolites of thromboxane B2 (TXB2), a biologically inactive product of thromboxane A2. The short half-life of thromboxane A2 and ex vivo production of thromboxane B2 by platelet activation make these prostanoid metabolites inappropriate as indices of systemic thromboxane biosynthesis, whereas 11-dehydro-TXB2 has been shown to reflect the release of thromboxane A2 in the human blood circulation. Analysis of 11-dehydro-TXB2 in plasma and urine was performed by gas chromatography-mass spectrometry-mass spectrometry using the chemically synthesized tetradeuterated compound as an internal standard. The high selectivity of triple-stage quadrupole mass spectrometry (tandem mass spectrometry) considerably facilitates sample purification as compared to single quadrupole mass spectrometric determination. Plasma concentrations in five healthy male volunteers were in the range 0.8-2.5 pg/ml. Urinary excretion of 11-dehydro-TXB2 was higher than that of 2,3-dinor-TXB2: 1.2 +/- 0.36 micrograms/24 h vs 0.53 +/- 0.33 micrograms/24 h (n = 5). Thus 11-dehydro-TXB2 appears at present to be the best index metabolite of systemic TXA2 activity in plasma as well as in urine.  相似文献   

3.
In order to identify suitable parameters for measurement of thromboxane production the metabolism of TXB2 was studied in the human. [3H8]-TXB2 was given intravenously to a healthy human volunteer. Blood samples were collected for 50 min after the injection, and urine was collected for 24 hours. The urinary and blood metabolic profiles were visualized by the use of two-dimensional TLC and autoradiography. Identification of metabolites was achieved with GC/MS and in some cases by cochromatography with reference compounds in TLC and GC.In blood, unmetabolized TXB2 was the dominating compound during the first 30 min. Three less polar metabolites appeared, two of which were identified as 11-dehydro-TXB2 and 11, 15-didehydro-13, 14-dihydro-TXB2, respectively. The third compound was tentatively identified as 15-dehydro-13, 14-dihydro-TXB2.Since 11-dehydro-TXB2 was one of the major metabolites in blood as well as urine, it was deemed suitable as target for measurement of thromboxane production . The advantages of 11-dehydro-TXB2 over its parent compound, TXB2, were demonstrated in experiments where unlabeled TXB2 was injected i.v. to a human volunteer, and the blood and urinary levels of both compounds were then followed by radioimmunoassay. Measured levels of 11-dehydro-TXB2 were found to give a more reliable picture of metabolic events than TXB2, the latter compound to a large extent reflecting technical difficulties during blood sample collection.  相似文献   

4.
Following the intravenous administration of thromboxane (TX) B2, the stable hydration product of TXA2, to human and nonhuman primates the most abundant urinary metabolites are 2,3-dinor-TXB2 and 11-dehydro-TXB2. However, it is not known whether fractional conversion of TXB2 to its enzymatic metabolites is an accurate representation of TXA2 metabolism. Thus, we have compared the metabolic disposition of synthetic TXA2 and TXB2 via the beta-oxidation and 11-OH-dehydrogenase pathways in vivo in the monkey. TXA2 or TXB2 (20 ng/kg) was intravenously administered to four cynomolgus monkeys pretreated with aspirin in order to suppress endogenous TXA2 production. Urinary TXB2, 2,3-dinor-TXB2 and 11-dehydro-TXB2 were measured before, during and up to 24 h after thromboxane administration by means of reversed-phase high-performance liquid chromatography radioimmunoassay. Aspirin treatment suppressed urinary 2,3-dinor-TXB2 and 11-dehydro-TXB2 by approx. 75%. A similar fractional conversion of TXA2 and TXB2 into 2,3-dinor-TXB2 and 11-dehydro-TXB2 was found. These results suggest that TXA2 is hydrolyzed to TXB2 prior to enzymatic degradation and that metabolites of the latter represent reliable indices of TXA2 biosynthesis. Due to the variability in the conversion of thromboxanes into 2,3-dinor-TXB2 and 11-dehydro-TXB2, the measurement of both metabolites seems to represent a more reliable index of acute changes in TXA2 production.  相似文献   

5.
A radioimmunoassay was developed for 11-dehydro-TXB2, a prominent metabolite of TXB2 in blood and urine of several species. In order to reliably assay 11-dehydro-TXB2, its chemical stability as well as its chromatographic properties were first examined. Since dehydrogenation at C-11 converts the thromboxane ring into the delta-lactone form of a dicarboxylic acid, which can also occur in an open form, the analysis of 11-dehydro-TXB2 may be somewhat complicated. In some chromatographic systems, the compound thus migrated with pronounced tailing, and during extraction using the common Sep-Pak procedure the two forms were partially separated. The lactone as well as the open form could be conclusively identified using mass spectrometry. The equilibrium between the two forms of 11-dehydro-TXB2 was studied in buffers of different pH and in plasma. Higher pH favoured hydrolysis into the acyclic structure. The lactonization and hydrolysis processes were also shown to be time and temperature dependent. Two different antiplasms, raised in rabbits against conjugates of 11-dehydro-TXB2 with bovine serum albumin, displayed somewhat different properties in their recognition of the two forms of 11-dehydro-TXB2. A radioimmunoassay employing these antibodies was developed. The labeled antigen was prepared by incubation of 3H-TXB2 with rabbit lung supernatant. The limit of detection was 1.5 pg. For validation of the assay, analysis of blood and urinary samples, obtained after injection of TXB2 to a human volunteer, was done. The values obtained were compatible with previous isotope studies. Results from an inhibition experiment with rabbit lung incubated in the presence or absence of indomethacin further supported the identity of the assayed substance.  相似文献   

6.
We have used a recently developed enzyme immunoassay (EIA) method for measuring urinary concentrations of TXB2, 6-keto PGF1 alpha, 2,3-dinor-TXB2, 2,3-dinor-6-keto PGF1 alpha and 11-dehydro-TXB2 using acetylcholinesterase from Electrophorus Electricus coupled to TXB2, 6-keto PGF1 alpha and 11-dehydro-TXB2. Urinary PGI2 and TXA2 breakdown products and their metabolites were extracted from 3-40 ml of urine corresponding to 100 mumoles creatinine. Measurements were performed after Sep-Pak extraction and thin layer chromatography separation in a system that allows separation between dinor- and parent derivatives. Because of the relatively high cross reactivity (10-15%) of the anti-TXB2 serum with 2,3-dinor TXB2 and the anti-6-keto PGF1 alpha serum with 2,3-dinor-6-keto PGF1 alpha, measurements were done using 3 antisera (anti-TXB2 and anti-6-keto PGF1 alpha diluted 1/50,000, anti 11-dehydro-TXB2 diluted 1/200,000). The reproducibility of the technique was assessed by measuring the same urine stored frozen in aliquots together with each series of samples (Coefficient of variation 6-12% (n = 20), depending on the compound). In addition, the use of a different solvent system for the thin layer chromatography did not affect the results although the migration of the compounds was modified significantly. Determination of the urinary excretion of TXB2 and prostacyclin metabolites in 17 healthy individuals by this method provided results in agreement with those obtained by other methodologies. In addition, comparisons made between EIA and gas chromatography/mass spectrometry analysis showed good correlation between the urinary metabolites as determined by each technique (r = 0.98).  相似文献   

7.
Conjugates of prostaglandins and thromboxanes with tritium labeled amino acids were prepared and employed as labeled ligands in prostaglandin and thromboxane radioimmunoassays. Assays for PGF2 alpha, 15-keto-13, 14-dihydro-PGF2 alpha, TXB2 and 15-keto-13,14-dihydro-TXB2 were evaluated in comparative studies using either these heterologous ligands or the corresponding homologous tritiated eicosanoid as tracers. Binding properties for the respective antibodies were found to be similar using either tracer. Three biological studies were also conducted, viz. study of the release of TXB2 during collagen induced platelet aggregation, of 15-keto-13,14-dihydro-TXB2 during guinea pig pulmonary anaphylaxis, and of PGF2 alpha (measured as 15-keto-13,14-dihydro-PGF2 alpha in peripheral plasma) during bovine luteolysis. The analyses gave comparable results using either the heterologous or the homologous assay. Thus, this type of labeled prostanoid conjugates may serve as a convenient alternative to homologous tracers in radioimmunoassay. Heterologous tracers may even in certain cases provide the only simple solution to the problem of preparing a labeled ligand of high specific activity.  相似文献   

8.
Urinary immunoreactive thromboxane (irTXB2) has been found helpful in acute settings with altered renal, but also extrarenal thromboxane formation. As only trace amounts of systemically formed thromboxane are excreted unmetabolized, the nature of urinary irTXB2 was explored. The two most abundant metabolites of systemic thromboxane, 2,3-dinor-TXB2 and 11-dehydro-TXB2, crossreacted about 70% and less than 1%, respectively, with a widely used thromboxane antiserum. After solid-phase extraction of urine samples and separation on reversed-phase HPLC, the bulk of immunoreactivity always eluted as one peak shown to correspond to 2,3-dinor-TXB2. Much less was found in fractions where TXB2 eluted. Therefore, urines were read against calibration curves constructed with 2,3-dinor-TXB2. This direct estimation gave good recoveries for standard 2,3-dinor-TXB2 and correlated well, both in healthy controls and in patients at increased risk or with overt vascular disease, to values obtained after solid phase extraction, purification on reversed-phase HPLC and quantitation by either gas-chromatography mass-spectrometry or radioimmunoassay. Patients with multiple cardiovascular risk factors but free from detectable vascular disease excreted significantly more irTXB2 than age-matched controls with non-vascular conditions or normals. Therefore, urinary irTXB2 measured with this antiserum represents 2,3-dinor-TXB2, reflecting the systemic formation of TXB2. This simple approach is feasible for screening thromboxane formation in large series of patients. Its acumen in detecting the early development of vascular disease and its relation to established risk factors deserves large-scale prospective testing.  相似文献   

9.
[3H8]Thromboxane B2 was biosynthesized and infused into an unanesthetized monkey. Several urinary metabolites were isolated and their structures elucidated using gas chromatography-mass spectrometry. In addition to the major urinary metabolite, dinor-thromboxane B2, a series of metabolites resulting from dehydrogenetion of the alcohol group at C-11 were identified: 11-dehydro-thromboxane B2, 11-dehydro-15-keto-13,14-dihydro-2,3-dinor-thromboxane B2, and 11-dehydro-15-keto-13,14-dihydro-19-carboxyl-2,3,4,5-tetranor-thromboxane B2. 6-(1,3-dihydroxypropyl)-7-hydroxy-10-oxo-3-pentadecaenoic acid was also identified. Three mono-O-ethylated metabolites were formed from thromboxane B2, which in this study was infused in an ethanolic solution. A small quantity of thromboxane B2 was excreted unchanged into the urine.  相似文献   

10.
Thromboxane (TX) B2, the chemically stable hydration product of pro-aggregatory TXA2, undergoes two major pathways of metabolism in man, resulting in the formation of 2.3-dinor-TXB2 and 11-dehydro-TXB2, respectively. We have measured the excretion of the latter during the infusion of exogenous TXB2 over a 50-fold dose range in order to examine the fractional conversion of TXB2 to urinary 11-dehydro-TXB2 and to re-assess the rate of entry of endogenous TXB2 into the circulation. Four healthy male volunteers received 6-h intravenous infusions of the vehicle alone and TXB2 at 0.1, 1.0 and 5.0 ng.kg-1.min-1 in random order. They were pretreated with aspirin 325 mg/d in order to suppress endogenous TXB2 production. Urinary 11-dehydro-TXB2 and 2,3-dinor-TXB2 were measured before, during and up to 24 h after the infusions and in aspirin-free periods, by means of NICI-GC/MS-validated radioimmunoassays. Aspirin treatment suppressed urinary 11-dehydro-TXB2 by 91%. The fractional elimination of 11-dehydro-TXB2 was independent of the rate of TXB2 infusion and averaged 6.8 +/- 0.7%, as compared to 6.4 +/- 0.9% for 2,3-dinor-TXB2. Interpolation of 11-dehydro-TXB2 values obtained in aspirin-free periods onto the linear relationship between the quantities of infused TXB2 and the amount of metabolite excreted in excess of control values (y = 0.0058x, r = 0.94, P less than 0.001) permitted calculation of the mean rate of entry of endogenous TXB2 into the circulation as 0.12 ng.kg-1.min-1. We conclude that: (a) urinary 11-dehydro-TXB2 is at least as abundant a conversion product of exogenously infused TXB2 as 2,3-dinor-TXB2; (b) its excretion increases linearly as a function of the rate of entry of TXB2 into the circulation up to approx. 40-fold the calculated rate of secretion of endogenous TXB2; (c) the latter is consistent with previous estimates based on monitoring of the beta-oxidation pathway of TXB2 metabolism.  相似文献   

11.
OBJECTIVE: A disturbance of prostacyclin (PGI2) and thromboxane A2 (TXA2) balance has been reported in preeclampsia. However, little is known about the concentrations of these prostanoids in neonates born to preeclamptic pregnant women. The purpose of this study is to determine whether the PGI2 and TXA2 concentrations are altered and whether the prostanoid balance correlates to the cerebral blood flow in neonates born to preeclampsia. METHODS: Spontaneously voided urine samples were collected from 20 neonates of normotensive and 16 neonates of preeclamptic women during the first 24 h after birth. We measured by radioimmunoassay the concentrations of urinary 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha) and 11-dehydro-thromboxane B2 (11-dehydro-TXB2), respectively. Blood flow velocity in the middle cerebral artery was studied by pulsed Doppler ultrasonography in the neonates between 17 and 38 h after birth. RESULTS: There was no significant difference between the urinary 6-keto-PGF1alpha in the neonates of mothers with and without preeclampsia (median, 5.3 vs. 3.6 ng/mg of creatinine). In contrast, the urinary 11-dehydro-TXB2 and the ratio of 11-dehydro-TXB2 to 6-keto-PGF1alpha in the neonates of mothers with preeclampsia were significantly lower as compared with the neonates without preeclampsia, respectively (13.7 vs. 20.6 ng/mg of creatinine and 3.0 vs. 5.2, median). The resistance index in the middle cerebral artery was significantly reduced in the neonates with preeclampsia than without preeclampsia (0.67 +/- 0.01 vs. 0.74 +/- 0.02, mean +/- SEM). CONCLUSIONS: There was an association between maternal preeclampsia and the imbalance in the neonatal urinary excretion of PGI2 and TXA2 metabolites. This imbalance may contribute to the regulation of cerebral blood flow.  相似文献   

12.
The metabolism of thromboxane B2 (TXB2), the stable breakdown product of thromboxane A2, has been studied in isolated perfused kidney preparations using a recirculating system. In a first experiment, TXB2 was infused at a rate of 20 micrograms/kg per min. In a second experiment, a 1:1 mixture of TXB2 and octadeuterated TXB2 (0.4 microgram/kg per min each) was infused. Urinary samples collected during the infusion of TXB2 or vehicle were extracted on C18 cartridges and derivatized to methyl or pentafluorobenzyl ester, methyloxime, trimethylsilyl ether. Samples were analyzed by high-resolution gas chromatography-mass spectrometry in the electron impact and negative ion chemical ionization modes. Products of beta-oxidation, reduction of the delta 5,6 double bond and dehydrogenation at C-11 (2,3-dinor-TXB2, 2,3-dinor-TXB1, 2,3,4,5-tetranor-TXB1 and 11-dehydro-TXB2) were identified in addition to unmetabolized TXB2. 2,3,4,5-tetranor-TXB1 and 2,3-dinor-TXB1 were the most abundant metabolites.  相似文献   

13.
An antibody-mediated extraction method for gas chromatographic-mass spectrometric analysis of thromboxane A2 (TXA2) urinary metabolites is reported. An antibody (Ab) raised against thromboxane B2 (TXB2) (35% cross-reacting with 2,3-dinor-TXB2) was coupled to CNBr-activated Sepharose 4B (Se) and used as stationary phase for simultaneous extraction of both compounds from urine. After addition of deuterium-labeled TXB2 as internal standard, rat or human urine was percolated through a small Ab-Se column. After being washed, the eluate was directly derivatized to the pentafluorobenzyl ester, methyloxime, and trimethylsilyl ether. Quantitation was performed by high-resolution gas chromatography-negative-ion chemical ionization mass spectrometry, monitoring the carboxylate anions. This method was applied to evaluate the urinary excretion of TXB2 and 2,3-dinor-TXB2 in humans and rats. We report on the excretion of 2,3-dinor-TXB2 in the rat. This novel approach to the extraction of urinary thromboxanes is more convenient than currently available methods in terms of simplicity, rapidity, and recovery. This method could be extended to any other prostanoid for which an antibody could be obtained.  相似文献   

14.
Bronchoconstrictor cysteinyl leukotrienes (LT) and thromboxane (TX) A2 have been implicated in the pathogenesis of asthma. Determination of urinary leukotriene E4 (LTE4) and 11-dehydro-TXB2 levels are often used to assess cysteinyl LT and TXA2 production in humans. To define the potential role in the pathogenesis of asthma, we investigated the urinary LTE4 and 11-dehydro-TXB2 levels. LTE4 and 11-dehydro-TXB2 levels were determined using liquid chromatography/tandem mass spectrometry (LC/MS) and gas chromatography/mass spectrometry (GC/MS), respectively. Urinary LTE4 levels in asthmatic patients (192 +/- 122 pg/mg creatinine, n = 14) were significantly higher (P < 0.005) than those in healthy volunteers (55 +/- 16 pg/mg creatinine, n = 13), but no significant difference in 11-dehydro-TXB2 levels was observed. A significant inverse correlation (r = -0.821, P < 0.005) was found between urinary LTE4 levels and the forced expiratory volume in 1 s (FEV1) but no significant correlation was observed between urinary 11-dehydro-TXB2 levels and FEV1. The present findings suggest that cysteinyl LTs play a more important role in the pathogenesis of asthma than TXA2.  相似文献   

15.
The metabolic transformation of exogenous prostaglandin D2 was investigated in isolated perfused rat lung. Dose-dependent formation (2-150 ng) of 9 alpha,11 beta-prostaglandin F2, corresponding to about 0.1% of the perfused dose of prostaglandin D2, was observed by specific radioimmunoassay both in the perfusate and in lung tissue after a 5-min perfusion. To investigate the reason for this low conversion ratio, we analyzed the metabolites of tritium-labeled 9 alpha,11 beta-prostaglandin F2 and prostaglandin D2 by boric acid-impregnated TLC and HPLC. By 5 min after the start of perfusion, 9 alpha,11 beta-prostaglandin F2 disappeared completely from the perfusate and the major product formed remained unchanged during the remainder of the 30-min perfusion. The major product was separated by TLC and identified as 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2 by GC/MS. In contrast, pulmonary breakdown of prostaglandin D2 was slow and two major metabolites in the perfusate increased with time, each representing 56% and 11% of the total radioactivity at the end of the perfusion. The major product (56%) was identified as 13,14-dihydro-15-ketoprostaglandin D2 and the minor one (11%) was tentatively identified as 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2 based on the results from radioimmunoassays, TLC, HPLC, and the time course of pulmonary breakdown. These results demonstrate that the metabolism of prostaglandin D2 in rat lung involves at least two pathways, one by 15-hydroxyprostaglandin dehydrogenase and the other by 11-ketoreductase, and that the 9 alpha,11 beta-prostaglandin F2 formed is rapidly metabolized to 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2.  相似文献   

16.
11-Dehydro-thromboxane B2 is now considered to be a reliable parameter of thromboxane A2 formation in vivo. An immunoaffinity purification method was developed for radioimmunoassay of this compound contained in human urine and plasma. Monoclonal anti-11-dehydro-thromboxane B2 antibody was prepared and coupled to BrCN-activated Sepharose 4B. Human urine or plasma was applied to a disposable column of the immobilized antibody. After the column was washed with water, 11-dehydro-thromboxane B2 was eluted with methanol/water (95/5) with a recovery of more than 90%. The purified extract was subjected to a radioimmunoassay utilizing 11-[3H]dehydro-thromboxane B2 methyl ester and the monoclonal anti-11-dehydro-thromboxane B2 antibody. The detection range of the assay was 10-600 fmol (IC50 = 90 fmol). The cross-reactivities of the antibody with thromboxane B2, 2,3-dinor-thromboxane B2, and other arachidonate metabolites were less than 0.05%. These compounds were efficiently separated from 11-dehydro-thromboxane B2 by the immunoaffinity purification. This procedure also allowed the separation of 11-dehydro-thromboxane B2 from unidentified urinary and plasma substances which interfered with the radioimmunoassay. Validity of the results obtained by the radioimmunoassay was confirmed by GC/MS employing selected ion monitoring for quantification.  相似文献   

17.
H Kindahl 《Prostaglandins》1977,13(4):619-629
[5,6,8,9,11,12,14,15-3H8]-Thromboxane B2 was injected into the saphenous vein of female cynomolgus monkeys, and blood samples were withdrawn from the contralateral saphenous vein. The compound was eliminated from the circulation with a half-life of about 10 min after an initial rapid disappearance. Some more polar products appeared with time, and also small amounts of material less polar than thromboxane B2; however, the dominating compound in all blood samples was unconverted thromboxane B2. About 45% of the given dose of tritium was excreted into urine in 48 hrs. Several metabolites of thromboxane B2 were found. The major urinary metabolite was identified as dinorthromboxane B2 (about 32% of urinary radioactivity). Unconverted thromboxane B2 was also found in considerable amounts (13% of urinary radioactivity). It is concluded that 1) dehydrogenation at C-12 is not a major pathway in the degradation of this compound, in contrast to metabolism at the corresponding C-15 alcohol group of prostaglandins; 2) after having gained access to the circulation, thromboxane B2 is the main circulating compound; however, assay of thromboxane B2 in plasma will be complicated or precluded by large artifactual production of the compound by platelets during sample collection.  相似文献   

18.
The role of platelet and vascular arachidonate metabolism in ischemic heart disease can be derived from direct measurements and/or inhibitor trials. Direct measurements have yielded somewhat conflicting results, largely related to analytical problems and ex vivo platelet activation during blood sampling. On the other hand, inhibitor trials have clearly established the following: 1) thromboxane (TX) A2-dependent platelet activation plays an important role in the dynamic process of coronary thrombosis in unstable angina, 2) TXA2 does not appear to mediate coronary vasospasm, as seen in variant angina, 3) endogenous prostacyclin (PGI2) is not released in response to myocardial ischemia and is unlikely to regulate coronary blood flow, and 4) exogenous PGI2 is of limited therapeutic benefit. The demonstration that low-dose aspirin (0.5-1.0 mg/(kg X day] is a selective inhibitor of TXA2-dependent platelet function provides a conceptual and practical framework for the rational design of future trials. Moreover, the identification of major enzymatic metabolites of TXB2 in plasma (11-dehydro-TXB2) and urine (2,3-dinor-TXB2) and development of appropriate analytical techniques offer the opportunity for better defining the pathophysiological role of TXA2 in humans.  相似文献   

19.
Aspirin may reduce the risk of colorectal neoplasia at doses similar to those recommended for the prevention of cardiovascular disease. Thus, we aimed to address whether enhanced platelet activation, as assessed by the measurement of the urinary excretion of 11-dehydro-TXB(2) (a major enzymatic metabolite of TXB(2)), occurs in patients with colorectal cancer. In 10 patients with colorectal cancer, the urinary excretion of 11-dehydro-TXB(2) was significantly higher than in 10 controls, matched for sex, age and cardiovascular risk factors [1001(205-5571) versus 409(113-984) pg/mg creatinine, respectively, median (range), P<0.05]. The administration of aspirin 50 mg daily for 5 consecutive days to colorectal cancer patients caused a cumulative inhibition of platelet cyclooxygenase (COX)-1 activity either ex vivo, as assessed by the measurement of serum TXB(2) levels, or in vivo, as assessed by urinary 11-dehydro-TXB(2) excretion. In conclusion, enhanced platelet activation occurs in colorectal cancer patients. Permanent inactivation of platelet COX-1 by low-dose aspirin might restore anti-tumor reactivity.  相似文献   

20.
[9β-3H]-17-Phenyl-18,19,20-trinor-PGF2α was injected subcutaneously into female Cynomolgus monkeys and the structures of six products appearing in the urine were determined. The main urinary metabolites were the dinor- and tetranor-derivatives of 15-keto-13,14-dihydro-17-phenyl-18,19,20-trinor-PGF2α. Unchanged 17-phenyl-18,19,20-trinor-PGF2α was also identified among the urinary products, as well as its dinor- and tetranor-derivatives. Finally, the dinor-derivative of 13,14-dihydro-17-phenyl-18,19,20-trinor-PGF2α was also found in urine. The same six products were also found in urine from human female subjects that had received 17-phenyl-18,19,20-trinor-PGF2α either subcutaneously or intravenously.Studies on the half-life of the compound in the circulation were also performed in human females. Two less polar metabolites in plasma were identified, viz. 13,14-dihydro-17-phenyl-18,19,20-trinor-PGF2α and 15-keto-13,14-dihydro-17-phenyl-18,19,20-trinor-PGF2α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号