首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin and modes of transmission of introns remain matters of much debate. Previous studies of the group I intron in the angiosperm cox1 gene inferred frequent angiosperm-to-angiosperm horizontal transmission of the intron from apparent incongruence between intron phylogenies and angiosperm phylogenies, patchy distribution of the intron among angiosperms, and differences between cox1 exonic coconversion tracts (the first 22 nt downstream of where the intron inserted). We analyzed the cox1 gene in 179 angiosperms, 110 of them containing the intron (intron(+)) and 69 lacking it (intron(-)). Our taxon sampling in Araceae is especially dense to test hypotheses about vertical and horizontal intron transmission put forward by Cho and Palmer (1999. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial coxl gene during evolution of the Araceae family. Mol Biol Evol. 16:1155-1165). Maximum likelihood trees of Araceae cox1 introns, and also of all angiosperm cox1 introns, are largely congruent with known phylogenetic relationships in these taxa. The exceptions can be explained by low signal in the intron and long-branch attraction among a few taxa with high mitochondrial substitution rates. Analysis of the 179 coconversion tracts reveals 20 types of tracts (11 of them only found in single species, all involving silent substitutions). The distribution of these tracts on the angiosperm phylogeny shows a common ancestral type, characterizing most intron(+) and some intron(-) angiosperms, and several derivative tract types arising from gradual back mutation of the coconverted nucleotides. Molecular clock dating of small intron(+) and intron(-) sister clades suggests that coconversion tracts have persisted for 70 Myr in Araceae, whose cox1 sequences evolve comparatively slowly. Sequence similarity among the 110 introns ranges from 91% to identical, whereas putative homologs from fungi are highly different, but sampling in fungi is still sparse. Together, these results suggest that the cox1 intron entered angiosperms once, has largely or entirely been transmitted vertically, and has been lost numerous times, with coconversion tract footprints providing unreliable signal of former intron presence.  相似文献   

2.
Analyses of mitochondrial sequences revealed the existence of a group I intron in the cytochrome oxidase subunit 1 (cox1) gene in 13 of 41 genera (20 out of 73 species) of corals conventionally assigned to the suborder Faviina. With one exception, phylogenies of the coral cox1 gene and its intron were concordant, suggesting at most two insertions and many subsequent losses. The coral introns were inferred to encode a putative homing endonuclease with a LAGLI-DADG motif as reported for the cox1 group I intron in the sea anemone Metridium senile. However, the coral and sea anemone cox1 group I introns differed in several aspects, such as the intron insertion site and sequence length. The coral cox1 introns most closely resemble the mitochondrial cox1 group I introns of a sponge species, which also has the same insertion site. The coral introns are also more similar to the introns of several fungal species than to that of the sea anemone (although the insertion site differs in the fungi). This suggests either a horizontal transfer between a sponge and a coral or independent transfers from a similar fungal donor (perhaps one with an identical insertion site that has not yet been discovered). The common occurrence of this intron in corals strengthens the evidence for an elevated abundance of group I introns in the mitochondria of anthozoans. [Reviewing Editor: Dr. Niles Lehman]  相似文献   

3.
Cryptophytes are unicellular eukaryotic algae that acquired photosynthesis secondarily through the uptake and retention of a red-algal endosymbiont. The plastid genome of the cryptophyte Rhodomonas salina CCMP1319 was recently sequenced and found to contain a genetic element similar to a group II intron. Here, we explore the distribution, structure and function of group II introns in the plastid genomes of distantly and closely related cryptophytes. The predicted secondary structures of six introns contained in three different genes were examined and found to be generally similar to group II introns but unusually large in size (including the largest known noncoding intron). Phylogenetic analysis suggests that the cryptophyte group II introns were acquired via lateral gene transfer (LGT) from a euglenid-like species. Unexpectedly, the six introns occupy five distinct genomic locations, suggesting multiple LGT events or recent transposition (or both). Combined with structural considerations, RT–PCR experiments suggest that the transferred introns are degenerate ‘twintrons’ (i.e. nested group II/group III introns) in which the internal intron has lost its splicing capability, resulting in an amalgamation with the outer intron.  相似文献   

4.
The wide but sporadic distribution of group I introns in protists, plants, and fungi, as well as in eubacteria, likely resulted from extensive lateral transfer followed by differential loss. The extent of horizontal transfer of group I introns can potentially be determined by examining closely related species or genera. We used a phylogenetic approach with a large data set (including 62 novel large subunit [LSU] rRNA group I introns) to study intron movement within the monophyletic lichen family Physciaceae. Our results show five cases of horizontal transfer into homologous sites between species but do not support transposition into ectopic sites. This is in contrast to previous work with Physciaceae small subunit (SSU) rDNA group I introns where strong support was found for multiple ectopic transpositions. This difference in the apparent number of ectopic intron movements between SSU and LSU rDNA genes may in part be explained by a larger number of positions in the SSU rRNA, which can support the insertion and/or retention of group I introns. In contrast, we suggest that the LSU rRNA may have fewer acceptable positions and therefore intron spread is limited in this gene. Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

5.
The intron content of plant organellar genes is a useful marker in molecular systematics and evolution. We have tested representatives of a wide range of monocotyledonous plant families for the presence of an intron (cox2 intron 1) in one of the most conservative mitochondrial genes, the cox2 locus. Almost all species analyzed were found to harbor a group II intron at a phylogenetically conserved position. The only exceptions were members of a single monocot family, the Ruscaceae: representatives of all genera in this family were found to lack cox2 intron 1, but instead harbor an intron in the 3' portion of the cox2 coding region (cox2 intron 2). The presence of cox2 intron 1 in families of monocotyledonous plants that are closely related to the Ruscaceae suggests that loss of the intron is specific to this family and may have accompanied the evolutionary appearance of the Ruscaceae. Interestingly, sequences that are highly homologous to cox2 intron 2 are found in a nuclear intron in a lineage of monocotyledonous plants, suggesting that the originally mitochondrial group II intron sequence was transferred to the nuclear genome and reused there to build a spliceosomal intron.  相似文献   

6.
Horizontal gene transfer is surprisingly common among plant mitochondrial genomes. The first well-established case involves a homing group I intron in the mitochondrial cox1 gene shown to have been frequently acquired via horizontal transfer in angiosperms. Here, we report extensive additional sampling of angiosperms, including 85 newly sequenced introns from 30 families. Analysis of all available data leads us to conclude that, among the 640 angiosperms (from 212 families) whose cox1 intron status has been characterized thus far, the intron has been acquired via roughly 70 separate horizontal transfer events. We propose that the intron was originally seeded into angiosperms by a single transfer from fungi, with all subsequent inferred transfers occurring from one angiosperm to another. The pattern of angiosperm-to-angiosperm transfer is biased toward exchanges between plants belonging to the same family. Illegitimate pollination is proposed as one potential factor responsible for this pattern, given that aberrant, cross-species pollination is more likely between close relatives. Other potential factors include shared vectoring agents or common geographic locations. We report the first apparent cases of loss of the cox1 intron; losses are accompanied by retention of the exonic coconversion tract, which is located immediately downstream of the intron and which is a product of the intron's self-insertion mechanism. We discuss the many reasons why the cox1 intron is so frequently and detectably transferred, and rarely lost, and conclude that it should be regarded as the "canary in the coal mine" with respect to horizontal transfer in angiosperm mitochondria.  相似文献   

7.

Background  

Animal mitochondrial introns are rare. In sponges and cnidarians they have been found in the cox 1 gene of some spirophorid and homosclerophorid sponges, as well as in the cox 1 and nad 5 genes of some Hexacorallia. Their sporadic distribution has raised a debate as to whether these mobile elements have been vertically or horizontally transmitted among their hosts. The first sponge found to possess a mitochondrial intron was a spirophorid sponge from the Tetillidae family. To better understand the mode of transmission of mitochondrial introns in sponges, we studied cox 1 intron distribution among representatives of this family.  相似文献   

8.
9.
Molecular evolution of the mammalian ribosomal protein gene, RPS14   总被引:4,自引:0,他引:4  
Ribosomal protein S14 genes (RPS14) in eukaryotic species from protozoa to primates exhibit dramatically different intron-exon structures yet share homologous polypeptide-coding sequences. To recognize common features of RPS14 gene architectures in closely related mammalian species and to evaluate similarities in their noncoding DNA sequences, we isolated the intron-containing S14 locus from Chinese hamster ovary (CHO) cell DNA by using a PCR strategy and compared it with human RPS14. We found that rodent and primate S14 genes are composed of identical protein-coding exons interrupted by introns at four conserved DNA sites. However, the structures of corresponding CHO and human RPS14 introns differ significantly. Nonetheless, individual intron splice donor, splice acceptor, and upstream flanking motifs have been conserved within mammalian S14 homologues as well as within RPS14 gene fragments PCR amplified from other vertebrate genera (birds and bony fish). Our data indicate that noncoding, intronic DNA sequences within highly conserved, single-copy ribosomal protein genes are useful molecular landmarks for phylogenetic analysis of closely related vertebrate species.   相似文献   

10.
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants. Correspondence to: J.C. Vaughn  相似文献   

11.
Group I introns were discovered inserted at the same position in the nuclear small-subunit ribosomal DNA (nuc-ssu-rDNA) in several species of homobasidiomycetes (mushroom-forming fungi). Based on conserved intron sequences, a pair of intron-specific primers was designed for PCR amplification and sequencing of intron-containing rDNA repeats. Using the intron-specific primers together with flanking rDNA primers, a PCR assay was conducted to determine presence or absence of introns in 39 species of homobasidiomycetes. Introns were confined to the genera Panellus, Clavicorona, and Lentinellus. Phylogenetic analyses of nuc-ssu-rDNA and mitochondrial ssu-rDNA sequences suggest that Clavicorona and Lentinellus are closely related, but that Panellus is not closely related to these. The simplest explanation for the distribution of the introns is that they have been twice independently gained via horizontal transmission, once on the lineage leading to Panellus, and once on the lineage leading to Lentinellus and Clavicorona. BLAST searches using the introns from Panellus and Lentinellus as query sequences retrieved 16 other similar group I introns of nuc-ssu-rDNA and nuclear large-subunit rDNA (nuc-lsu-rDNA) from fungal and green algal hosts. Phylogenetic analyses of intron sequences suggest that the mushroom introns are monophyletic, and are nested within a clade that contains four other introns that insert at the same position as the mushroom introns, two from different groups of fungi and two from green algae. The distribution of host lineages and insertion sites among the introns suggests that horizontal and vertical transmission, homing, and transposition have been factors in intron evolution. As distinctive, heritable features of nuclear rDNAs in certain lineages, group I introns have promise as phylogenetic markers. Nevertheless, the possibility of horizontal transmission and homing also suggest that their use poses certain pitfalls.   相似文献   

12.
H Trinkl  K Wolf 《Gene》1986,45(3):289-297
The gene encoding subunit 1 of cytochrome oxidase (cox1) in the fission yeast Schizosaccharomyces pombe is polymorphic. In strain 50 it contains two group I introns with open reading frames (ORFs) in phase with the upstream exons (Lang, 1984). In strain EF1 two additional very short group I introns which do not possess ORFs were detected by DNA sequencing. These two introns (AI2a and AI3) share distinct characteristics concerning their nucleotide sequence and secondary structure and are located at identical positions as the introns AI4 and AI5 beta, respectively, in the cox1 gene of Saccharomyces cerevisiae. The sequence homology of the cob and cox1 genes around the splice points of introns AI2a, AI4, and BI4 (cob intron 4) might reflect horizontal gene transfer between the distantly related species S. pombe and S. cerevisiae.  相似文献   

13.
Mitochondria are descendants of the endosymbiotic α-proteobacterium most likely engulfed by the ancestral eukaryotic cells, and the proto-mitochondrial genome should have been severely streamlined in terms of both genome size and gene repertoire. In addition, mitochondrial (mt) sequence data indicated that frequent intron gain/loss events contributed to shaping the modern mt genome organizations, resulting in the homologous introns being shared between two distantly related mt genomes. Unfortunately, the bulk of mt sequence data currently available are of phylogenetically restricted lineages, i.e., metazoans, fungi, and land plants, and are insufficient to elucidate the entire picture of intron evolution in mt genomes. In this work, we sequenced a 12 kbp-fragment of the mt genome of the katablepharid Leucocryptos marina. Among nine protein-coding genes included in the mt genome fragment, the genes encoding cytochrome b and cytochrome c oxidase subunit I (cob and cox1) were interrupted by group I introns. We further identified that the cob and cox1 introns host open reading frames for homing endonucleases (HEs) belonging to distantly related superfamilies. Phylogenetic analyses recovered an affinity between the HE in the Leucocryptos cob intron and two green algal HEs, and that between the HE in the Leucocryptos cox1 intron and a fungal HE, suggesting that the Leucocryptos cob and cox1 introns possess distinct evolutionary origins. Although the current intron (and intronic HE) data are insufficient to infer how the homologous introns were distributed to distantly related mt genomes, the results presented here successfully expanded the evolutionary dynamism of group I introns in mt genomes.  相似文献   

14.
The history of group I introns is characterized by repeated horizontal transfers, even among phylogenetically distant species. The symbiogenetic thalli of lichens are good candidates for the horizontal transfer of genetic material among distantly related organisms, such as fungi and green algae. The main goal of this study was to determine whether there were different trends in intron distribution and properties among Chlorophyte algae based on their phylogenetic relationships and living conditions. Therefore, we investigated the occurrence, distribution and properties of group I introns within the chloroplast LSU rDNA in 87 Chlorophyte algae including lichen and free‐living Trebouxiophyceae compared to free‐living non‐Trebouxiophyceae species. Overall, our findings showed that there was high diversity of group I introns and homing endonucleases (HEs) between Trebouxiophyceae and non‐Trebouxiophyceae Chlorophyte algae, with divergence in their distribution patterns, frequencies and properties. However, the differences between lichen Trebouxiophyceae and free‐living Trebouxiophyceae were smaller. An exception was the cL2449 intron, which was closely related to ω elements in yeasts. Such introns seem to occur more frequently in lichen Trebouxiophyceae compared to free‐living Trebouxiophyceae. Our data suggest that lichenization and maintenance of lichen symbiosis for millions of years of evolution may have facilitated horizontal transfers of specific introns/HEs between symbionts. The data also suggest that sequencing of more chloroplast genes harboring group I introns in diverse algal groups may help us to understand the group I intron/HE transmission process within these organisms.  相似文献   

15.
In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a "Homing Endonuclease Gene" (heg) encoding a DNA endonuclease acting in transfer and site-specific integration ("homing") and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote.  相似文献   

16.
In this study, all available cytochrome b (Cyt b) genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms.  相似文献   

17.
18.
We have characterized structural features and the distribution pattern of nuclear group I introns found in ribosomal DNA (rDNA) of closely related plant pathogenic fungi of the family Sclerotiniaceae. Sixteen introns, at two distinct positions in the small-subunit (SSU) and large-subunit (LSU) rDNA, were sequenced and analyzed among the 29 taxa included in the initial screening. Genera found to contain introns were Botrytis, Dumontinia, Encoelia, Grovesinia, Myriosclerotinia, and Sclerotinia. Secondary-structure analyses of the group I introns concluded that all belong to the common IC1 subclass. Interestingly, the SSU rDNA intron from Myriosclerotinia caricisampullacea contains an insertion-like sequence extension which may be a relic of an open reading frame. Incongruent branching patterns of intron-based and rDNA-based (internal transcribed spacer) phylogenetic trees suggest that the fungal host genomes and the group I introns do not share a common evolutionary history. A model to explain how horizontal intron transfers may have occurred among the closely related fungal taxa is proposed.  相似文献   

19.
B F Lang 《The EMBO journal》1984,3(9):2129-2136
The DNA sequence of the second intron in the mitochondrial gene for subunit 1 of cytochrome oxidase (cox1), and the 3'' part of the structural gene have been determined in Schizosaccharomyces pombe. Comparing the presumptive amino acid sequence of the 3'' regions of the cox1 genes in fungi reveals similarly large evolutionary distances between Aspergillus nidulans, Saccharomyces cerevisiae and S. pombe. The comparison of exon sequences also reveals a stretch of only low homology and of general size variation among the fungal and mammalian genes, close to the 3'' ends of the cox1 genes. The second intron in the cox1 gene of S. pombe contains an open reading frame, which is contiguous with the upstream exon and displays all characteristics common to class I introns. Three findings suggest a recent horizontal gene transfer of this intron from an Aspergillus type fungus to S. pombe. (i) The intron is inserted at exactly the same position of the cox1 gene, where an intron is also found in A. nidulans. (ii) Both introns contain the highest amino acid homology between the intronic unassigned reading frames of all fungi identified so far (70% identity over a stretch of 253 amino acids). However, in the most homologous region, a GC-rich sequence is inserted in the A. nidulans intron, flanked by two direct repeats of 5 bp. The 37-bp insert plus 5 bp of direct repeat amounts to an extra 42 bp in the A. nidulans intron. (iii) TGA codons are the preferred tryptophan codons compared with TGG in all mitochondrial protein coding sequences of fungi and mammalia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha‐proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein‐coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome‐wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad‐scale genome streamlining via loss of protein‐coding genes as well as noncoding, parasitic DNA elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号