首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral–pelagic resource axis; and (2) a more variable littoral–profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.  相似文献   

2.
The extensive phenotypic polymorphism in the European whitefish has triggered evolutionary research in order to disentangle mechanisms underlying diversification. To illuminate the ecological distinctiveness in polymorphic whitefish, and evaluate taxonomic designations, we studied nine Norwegian lakes in three watercourses, which each harboured pairs of divergent whitefish morphs. We compared the morphology and life history of these morphs, documented the extent of genetic differentiation between them, and contrasted the niche use of sympatric morphs along both the habitat and resource axes. In all cases, sympatric morphs differed in the number of gill rakers, a highly heritable trait related to trophic utilization. Individual growth rate, age and size at maturity, diet and habitat use also differed between morphs within lakes, but were remarkably similar across lakes within the same morph. Microsatellite analyses confirmed for all but one pair that sympatric morphs were significantly genetically different, and that similar morphs from different lakes likely have a polyphyletic origin. These results are most compatible with the process of parallel evolution through recurrent postglacial divergence into pelagic and benthic niches in each of these lakes. We propose that sparsely and densely rakered whitefish sympatric pairs may be a likely case of ecological speciation, mediated in oligotrophic lakes with few trophic competitors.  相似文献   

3.
Adaptive phenotypic divergence of sympatric morphs in a single species may have significant evolutionary consequences. In the present study, phenotypic impacts of predator on zooplankton prey populations were compared in two northern Finnish lakes; one with an allopatric whitefish, Coregonus lavaretus (L.), population and the other with three sympatric whitefish populations. First, we examined whether there were phenotypic associations with specific niches in allopatric and sympatric whitefish. Second, trait utility (i.e. number of gillrakers) of allopatric and sympatric whitefish in utilizing a pelagic resource was explored by comparing predator avoidance of prey, prey size in environment, and prey size in predator diet. The allopatric living large sparsely rakered (LSR) whitefish morph, was a generalist using both pelagic and benthic niches. In contrast, sympatric living whitefish morphs were specialized: LSR whitefish was a littoral benthivore, small sparsely rakered whitefish was a profundal benthivore and densely rakered (DR) whitefish was a pelagic planktivore. In the lake with allopatric whitefish, zooplankton prey did not migrate vertically to avoid predation whereas, in the lake with sympatric whitefish, all important prey taxa migrated significantly. Trait utility was observed as significantly smaller size of prey in environment and predator diet in the lake with DR whitefish than in the lake with only LSR whitefish.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 561–572.  相似文献   

4.
Natural populations often vary in their degree of ecological, morphological and genetic divergence. This variation can be arranged along an ecological speciation continuum of increasingly discrete variation, with high inter-individual variation at one end and well defined species in the other. In postglacial fishes, evolutionary divergence has commonly resulted in the co-occurrence of a pelagic and a benthic specialist. We studied three replicate lakes supporting sympatric pelagic and benthic European whitefish (Coregonus lavaretus (L.)) morphs in search for early signs of possible further divergence into more specialized niches. Using stomach content data (recent diet) and stable isotope analyses (time-integrated measure of trophic niche use), we observed a split in the trophic niche within the benthic whitefish morph, with individuals specializing on either littoral or profundal resources. This divergence in resource use was accompanied by small but significant differences in an adaptive morphological trait (gill raker number) and significant genetic differences between fish exploiting littoral and profundal habitats and foraging resources. The same pattern of parallel divergence was found in all three lakes, suggesting similar natural selection pressures driving and/or maintaining the divergence. The two levels of divergence (a clear and robust benthic – pelagic and a more subtle littoral – profundal divergence) observed in this study apparently represent different stages in the process of ecological speciation.  相似文献   

5.
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human‐induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer‐spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948–2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.  相似文献   

6.
Lake Thingvallavatn supports four trophic morphs of Arctic charr, Salvelinus alpinus (L.); two of the morphs are benthic (small and large benthivorous charr) one exploits pelagic waters (planktivorous charr) and the fourth is found in both habitats (piscivorous charr). The morphological variation among these morphs was analysed by use of principal component analysis and canonical discriminant analysis. The benihic morphs have a short lower jaw and long pectoral fins. The benthic fish also have fewer gillrakers than the other morphs. Small and large benthivorous charrs attain sexual maturity from 2 and 6 years of age, and at fork lengths from 7 and 22 cm, respectively. Small benthivorous charr retain their juvenile parr marks as adults, have beige ventral colours, and are frequently melanized under the lower jaw. Planktivorous and piscivorous charr attain sexual maturity from 4 and 6 years of age, from fork lengths of 15 and 23 cm, respectively. This phenotypic polymorphism is associated with habitat utilization and diet of the fish, and has probably arisen within the lake system through diversification and niche specialization. The pelagic morphs apparently stem from a single population, and are possibly diversified through conditional niche shifts which affect ontogeny. Juveniles reaching a body length of 23 cm may change from zooplankton to fish feeding. Asymptotic length increases thereby from 20.5 cm in planktivorous charr to 30.2 cm in piscivorous charr. The benthic morphs appear to represent separate populations, although both feed chiefly on the gastropod Lymnaea peregra. Their co-existence seems to be facilitated by size dependent constraints on habitat use. The small morph (asymptotic length 13.3 cm) exploit the interstitial crevices in the lava block substratum, whereas the large morph (asymptotic length 55.4 cm) live epibenthically.  相似文献   

7.
Divergent natural selection affecting specific trait combinations that lead to greater efficiency in resource exploitation is believed to be a major mechanism leading to trophic polymorphism and adaptive radiation. We present evidence of trophic polymorphism involving two benthic morphs within Percichthys trucha , a fish endemic to temperate South America. In a series of lakes located in the southern Andes, we found two morphs of P. trucha that could be distinguished on the basis of gill raker length and five other morphological measures, most of which are likely associated with the use of food resources. The differences were consistent across all lakes examined, and were correlated with habitat use and diet. Individuals with longer gill rakers were more abundant in the littoral zone (littoral morph) while the short gill-raker morph was more abundant at 10 m depth and deeper (deep benthic morph). Both morphs fed primarily on benthic invertebrates, but the littoral morph fed more on larval Anisoptera than did the deep benthic morph. Phenotypic correlations among traits were high for the littoral morph, but low and non-significant for the deep-benthic morph. We suggest that gill raker length may influence the relative efficiency of suction feeding for the two morphs. This is the first evidence of trophic polymorphism in fishes from temperate South America.  相似文献   

8.
Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L.)) morphs (two pelagic, one littoral and one profundal) using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.  相似文献   

9.
The trophic niche and parasite infection of Arctic charr (Salvelinus alpinus) were explored in two lakes with sympatric burbot (Lota lota) and two lakes without burbot in subarctic Norway. The CPUE of burbot and charr were similar in one lake, but burbot had a low population density in the other. Burbot were benthivorous in both lakes. Other co-occurring species like brown trout (Salmo trutta), Atlantic salmon parr (Salmo salar), grayling (Thymallus thymallus) and minnow (Phoxinus phoxinus) were also benthivores. At high densities, benthivorous burbot forced the whole Arctic charr population to utilise mainly the limnetic trophic niche. In contrast, at low burbot density or without burbot present, Arctic charr were primarily benthivorous in the littoral zone. Thus, a clear interactive segregation in diet was observed between Arctic charr and burbot at high burbot densities. There was also a high predation pressure from burbot on young Arctic charr along the benthic zones. The extensive use of zooplankton as prey caused a high parasite infection pressure of copepod transmitted Diphyllobothrium spp. larvae, with the potential for high negative impact on the Arctic charr population. As the benthivore trophic niche was occupied by burbot, the ecological opportunities for polymorphism with benthivorous ecotypes or morphs of Arctic charr were probably prevented. Therefore, the sympatry with burbot seems to have large ecological and evolutionary consequences for this Arctic charr population compared with neighbouring lakes where burbot is absent.  相似文献   

10.
Synopsis This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.  相似文献   

11.
Individual variations in habitat use and morphology in brook charr   总被引:2,自引:1,他引:1  
The specific objectives of this study were to determine if there is individual specialization in habitat use by lacustrine brook charr Salvelinus fontinalis and if so, if specialization is related to fish morphology. Localizations of 28 brook charr equipped with thermosensitive radiotransmitters were recorded during three summers (1991, 1992, and 1993) in two lakes of the Mastigouche Reserve (Québec, Canada). Fifty per cent of the fish were found mainly in the benthic zone (hereafter benthic individuals), 18% in the pelagic zone (pelagic individuals), and 32% travelled regularly between the two zones (generalist individuals). The observed interindividual differences in habitat preference were related to differences in body morphology and coloration: (i) the pectoral fins of benthic and generalist individuals were significantly longer than those of pelagic ones; and (ii) the coloration of the lower flank of benthic and generalist individuals was silver-grey while that of pelagic individuals was red. The results of this study suggest that brook charr inhabiting oligotrophic lakes of the Canadian Shield exhibit trophic polymorphisms, where some individuals are specialists better adapted to feeding in the littoral zone whereas others are specialists better adapted to feeding in the pelagic zone. The potential for reproductive isolation between the two morphs is discussed.  相似文献   

12.
Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow‐, deep‐water resource axis in a subarctic postglacial lake (Norway). The two deep‐water (profundal) spawning morphs, a benthivore (PB‐morph) and a piscivore (PP‐morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep‐water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small‐sized PB‐morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep‐water sediments. The PP‐morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO‐morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep‐water morphs, the LO‐morph had smaller head relative to body size. The LO‐morph exhibited traits typical for both shallow‐water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep‐water habitat for the PB‐ and PP‐morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep‐water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep‐water piscivore morph has to our knowledge not been described elsewhere.  相似文献   

13.
1.  Inter-individual differences in trophic behaviour are considered important in the disruptive selection process for resource specialization and may represent an early phase in the evolution of polymorphism and adaptive radiation. Here, we provide evidence of high stability of individual trophic niches of a fish predator from a 15-year study.
2.  Individual resource specialization was investigated by combining data from analyses of stomach contents (recent trophic niche), trophically transmitted parasites (long-term niche) and trophic morphology (niche adaptations) from single specimens of a postglacial fish (Arctic charr) population sampled from contrasting pelagic and littoral habitats.
3.  Based on the relationships between morphology, parasites and diet, high inter-individual temporal consistency of narrow niches (zooplanktivorous vs . benthivorous) was evident through the ontogeny of the charr, indicating low degree of switching both in habitat utilization and feeding strategy of individual fish. Co-occurrence of differently specialized behavioural phenotypes was sustained over multiple generations.
4.  The stable long-term habitat and feeding specializations may represent an important initial step in an adaptive radiation process, and our findings suggest a case of sympatric speciation into two incipient forms diverging along the littoral–pelagic resource axis.  相似文献   

14.

Small nearshore fishes are an important part of lacustrine and functional diversity and link pelagic and benthic habitats by serving as prey for larger nearshore and offshore fishes. However, the trophic complexity of these small nearshore fishes is often unrecognized and detailed studies of their role in food webs are lacking. Here, we examined niche space patterns of small nearshore fish species using Bayesian analyses of carbon and nitrogen stable isotope data in nine freshwater lakes that are among the largest lakes in Minnesota. We found considerable variability in niche areas within species and high variability in niche overlap across species. At the assemblage level, niche overlap (average diet overlap of all species pairs at a lake) decreased as whole-lake species richness increased, possibly indicating a greater degree of resource specialization in more speciose lakes. Overall fish niche space was weakly but significantly related to niche space of their invertebrate prey. Although nearshore benthic resources contributed to fish diets in all lakes, all fish species also had non-negligible and variable contributions from pelagic zooplankton. This inter- and intraspecific variability in trophic niche space likely contributes to the multi-level trophic complexity, functional diversity, and potentially food web resilience to ecosystem changes.

  相似文献   

15.
1. Generalist fish species are recognised as important couplers of benthic and pelagic food‐web compartments in lakes. However, interspecific niche segregation and individual specialisation may limit the potential for generalistic feeding behaviour. 2. We studied summer habitat use, stomach contents and stable isotopic compositions of the generalist feeder Arctic charr coexisting with its common resource competitor brown trout in five subarctic lakes in northern Norway to reveal population‐level and individual‐level niche plasticity. 3. Charr and trout showed partial niche segregation in all five lakes. Charr used all habitat types and a wide variety of invertebrate prey including zooplankton, whereas trout fed mainly on insects in the littoral zone. Hence, charr showed a higher potential to promote habitat and food‐web coupling compared to littoral‐dwelling trout. 4. The level of niche segregation between charr and trout and between pelagic‐caught and littoral‐caught charr depended on the prevailing patterns of interspecific and intraspecific resource competition. The two fish species had partially overlapping trophic niches in one lake where charr numerically dominated the fish community, whereas the most segregated niches occurred in lakes where trout were more abundant. 5. In general, pelagic‐caught charr had substantially narrower dietary and isotopic niches and relied less on littoral carbon sources compared to littoral‐caught conspecifics that included generalist as well as specialised benthivorous and planktivorous individuals. Despite the partially specialised planktivorous niche and thus reduced potential of pelagic‐dwelling charr to promote benthic–pelagic coupling, the isotopic compositions of both charr subpopulations suggested a significant reliance on both littoral and pelagic carbon sources in all five study lakes. 6. Our study demonstrates that both interspecific niche segregation between and individual trophic specialisation within generalist fish species can constrain food‐web coupling and alter energy mobilisation to top consumers in subarctic lakes. Nevertheless, pelagic and littoral habitats and food‐web compartments may still be highly integrated due to the potentially plastic foraging behaviour of top consumers.  相似文献   

16.
Three sympatric morphs of Arctic charr Salvelinus alpinus occur in Loch Rannoch, Scotland, and are identified by their differing head morphology and diet. These are small-headed benthic, large-headed benthic and pelagic morphs. Six species of endoparasitic helminth were found in the fish, but the morphs had different patterns of infection. Overall infections in pelagic charr were heavier than in large-headed benthics, which were in turn heavier than in small-headed benthics, even though benthic charr live longer than pelagics. Pelagic fish had high prevalences and intensities of pseudophyllidean tapeworms, the intermediate hosts of which are copepods. The prevalence and intensity of metacercariae of Diplostomum sp. (the intermediate hosts of which are snails) were high in the benthic morphs. The results are discussed in terms of the effects of ecological factors on transmission of helminth parasites to their hosts and the evolution of host-parasite associations.  相似文献   

17.
Individual Arctic charr (Salvelinus alpinus) from Fjellfr?svatn, northern Norway, could be categorized by their stomach contents as zooplanktivores or benthivores. Feeding specialization among these fish was evident from negative correlations between helminths transmitted by pelagic copepods (Diphyllobothrium dendriticum and D. ditremum) and those transmitted by the benthic amphipod Gammarus lacustris (Cystidicola farionis and Cyathocephalus truncatus). Occurrences of parasite species acquired from the same types of invertebrate were positively correlated in the fish. Strong relationships among habitat use, diet, and helminth infections among the Arctic charr indicated persistent foraging patterns involving long-term habitat use and feeding specialization. The distribution of all parasite species was highly aggregated in the fish samples, measured by the exponent k of the fitted negative binomial distributions (range: 0.5-7.5) and the variance-to-mean ratios (s2/mean, range: 5-85). Charr specializing on either copepods or Gammarus predominantly contributed to high-intensity class intervals within the overall frequency distributions of the corresponding parasite species. Such fish had low infection intensities of helminths transmitted by other prey organisms. The detailed analyses of the parasite frequency distributions for fish with different habitat or feeding preferences evidently show how heterogeneity in trophic behavior contributes strongly to the commonly observed aggregation of helminths among hosts under natural conditions.  相似文献   

18.
There is ample empirical evidence that phenotypic diversification in an adaptive radiation is the outcome of divergent natural selection related to differential resource use. In contrast, the role of ecological forces in favoring and maintaining reproductive isolation in nature remains poorly understood. If the same forces driving phenotypic divergence are also responsible for speciation, one would predict a correlation between the extent of trophic specialization (reflecting variable intensity of divergent natural selection) and that of reproductive isolation being reached in a given environment. We tested this hypothesis by comparing the extent of morphological and genetic differentiation between sympatric dwarf and normal whitefish ecotypes (Coregonus sp.) from six lakes of the St. John River basin (eastern Canada and northern Maine). Eight meristic variables, 19 morphometric variables, and six microsatellite loci were used to quantify morphological and genetic differentiation, respectively. Dwarf and normal ecotypes in each lake differed primarily by traits related to trophic specialization, but the extent of differentiation varied among lakes. Significant but variable genetic divergence between ecotypes within lakes was also observed. A negative correlation was observed between the extent of gene flow between ecotypes within a lake and that of their morphological differentiation in trophic-related traits. The extent of reproductive isolation reached between dwarf and normal whitefish ecotypes appears to be driven by the potential for occupying distinct trophic niches and, thus, by the same selective forces driving tropic specialization in each lake. These results therefore support the hypothesis of ecological speciation.  相似文献   

19.
If a pelagic ecosystem is invaded by an efficient planktivorous fish, competition theory predicts that habitat and/or diet segregation should occur if the invader and native planktivores are to co-exist. We compared the diet and pelagic habitat use between invading vendace (Coregonus albula) and two native morphs of whitefish (Coregonus lavaretus) in three subarctic lakes located within the same watercourse. No clear vertical habitat segregation was found as vendace prevailed throughout the entire depth range. Zooplankton generally dominated the diet of all three coregonids. No obvious resource partitioning was found in two of the lakes, while in the third lake the diets of whitefish and vendace differed significantly from each other. Here, the predominant pelagic whitefish morph fed extensively on water mites whereas vendace mainly consumed surface insects and to some extent small fish, apparently as a result of highly depleted zooplankton resources. The results suggest that various levels of resource depletion following the vendace invasion caused the observed differences between the lakes, indicating that different levels of resource partitioning were associated with dissimilar competition intensities. At present, coexistence of these congeneric species seems to be possible, although the vendace invasion has apparently resulted in a challenging and unstable situation for the planktivorous whitefish.  相似文献   

20.
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号