首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thromboxane receptor antagonist EP 092 inhibits the acute pulmonary vascular response to endotoxin in the anaesthetized, closed-chest sheep. The increase in the TXB2 level in arterial blood was not suppressed by EP 092. Intravenous infusion of the thromboxane mimetic 11,9-epoxymethano PGH2, but not PGF, raises pulmonary artery pressure and lowers arterial pO2 similar to the endotoxin. Isolated strips of lobar pulmonary veins but not lobar arteries are contracted by low concentrations of 11,9-epoxymethano PGH2 - the effects are potently inhibited by EP 092.  相似文献   

2.
The inhibition of human platelet aggregation produced by PGF2 alpha is not specific for thromboxane A2 mimetics. Aggregation waves induced by PAF and thrombin are also inhibited by PGF2 alpha (8 microM); ADP is unaffected. These effects are still seen in platelets from aspirin-treated donors and platelets desensitized to thromboxane-like agonists (e.g. 11,9-epoxymethano PGH2). In contrast the thromboxane receptor antagonist EP 045 (up to 20 microM) had no effect on primary aggregation induced by PAF, thrombin and ADP. We have previously shown that EP 045 (IC50 = 0.5 microM), but not PGF2 alpha (28 microM), displaces the specific binding of [3H] 9,11-epoxymethano PGH2 to washed human platelets. PGF2 alpha produces small increases in cAMP levels, and both this effect and the anti-aggregation are diminished by the adenyl cyclase inhibitor SQ 22536. The rise in cAMP induced by PGF2 alpha is inhibited to a greater extent by the presence of ADP than by thrombin, PAF or a thromboxane mimetic. The ability of aggregating agents to inhibit this increase correlates inversely with their sensitivity to inhibition by PGF2 alpha. We suggest that the very weak effect of PGF2 alpha on cyclic AMP production is sufficient to account for its inhibitory activity, and it is unlikely to be a competitive antagonist at the platelet thromboxane receptor as suggested by others.  相似文献   

3.
The influences of epoxymethano and epoxycarbonyl analogs of PGH1 on washed rabbit platelets, isolated smooth muscles and perfused heart preparations were investigated. On washed rabbit platelets, 11,9-epoxymethano and 11,9-epoxycarbonyl PGH1 produced a platelet aggregation whereas 9,11-epoxymethano and 9,11-epoxycarbonyl PGH1 produced an inhibition of arachidonic acid-induced platelet aggregation. On iso-ated rabbit thoracic aorta strips, 9,11-epoxycarbonyl PGH1 showed strong contracting activity (5 times as active as 11,9-epoxymethano PGH2 and 31 times as active as PGH2). All the analogs of PGH1 caused contraction of guinea pig tracheal muscle and caused an increase of perfusion pressure in guinea pig heart, though 11,9-epoxymethano and epoxycarbonyl PGH1 were far more active than 9,11-epoxymethano and epoxycarbonyl PGH1. Differences in biological activities between 11,9-epoxymethano and epoxycarbonyl PGH1 indicate that the orientation of functional groups at C9 and C11 influences biological activities.  相似文献   

4.
Pulmonary vascular responses to sarafotoxins 6a and 6c (S6a and S6c) were investigated in the intact-chest cat under constant flow conditions. Injections of S6a and S6c into the perfused lobar artery caused dose-related increases in lobar arterial pressure, increased left atrial pressure, and produced biphasic changes in systemic arterial (aortic) pressure. When left atrial pressure was maintained constant, injections of S6a, S6c, and endothelin 1 (ET-1) caused dose-related increases in lobar arterial pressure. The increases in lobar arterial pressure in response to S6a and S6c were not altered by treatment with a cyclooxygenase inhibitor or a thromboxane receptor blocking agent. Increases in lobar arterial pressure in response to S6a and S6c were not altered when airflow to the left lower lung lobe was interrupted by bronchial occlusion, and pressor responses were not diminished when the left lower lobe was perfused with low-molecular-weight dextran. Under conditions of controlled blood flow and constant left atrial pressure, S6a, S6b, S6c, and ET-1 had similar pressor activity, whereas the thromboxane A2 mimic, U-46619, had far greater activity when compared on a nanomolar basis. The present studies demonstrate that S6a and S6c have significant vasoconstrictor activity in the feline pulmonary vascular bed. These data suggest that pulmonary vasoconstrictor responses to the endothelin peptides are not dependent on release of cyclooxygenase products and the activation of thromboxane A2 receptors, alterations in bronchomotor tone, or interaction with formed elements in blood.  相似文献   

5.
The synthesis and biological activity of novel 4-methyl-3,5-dioxane analogues are described. All compounds were produced through modification of the substituent formally corresponding to the omega-octenol side chain of thromboxane A2 (TXA2), in reference to the structure of SQ29548. Several compounds were found to be potent TXA2 receptor antagonists. Compound 8b was the most effective inhibitor of 9,11-epoxymethano PGH2 (U-46619)-induced human platelet aggregation (IC50 = 7.4 nM).  相似文献   

6.
The inhibition of human platelet aggregation produced by PGF is not specific for thromboxane A2 mimetics. Aggregation waves induced by PAF and thrombin are also inhibited by PGF (8 μM); ADP is unaffected. These effects are still seen in platelets from aspirin-treated donors and platelets desensitized to thromboxane-like agonists (e.g. 11,9-epoxymethano PGH2). In contrast the thromboxane receptor antagonist EP 045 (up to 20 μM) had no effect on primary aggregation induced by PAF, thrombin and ADP. We have previously shown that EP 045 (IC50 = 0.5 μM), displaces the specific binding of [3H] 9,11-epoxymethano PGH2 to washed human platelets.PGF produces small increases in cAMP levels, and both this effect and the anti-aggregation are diminished by the adenyl cyclase inhibitor SQ 22536. The rise in cAMP induced by PGF is inhibited to a greater extent by the presence of ADP than by thrombin, PAF or a thromboxane mimetic. The ability of aggregating agents to inhibit this increase correlates inversely with their sensitivity to inhibition by PGF.We suggest that the very weak effect of PGF on cyclic AMP_ production is sufficient to account for its inhibitory activity, and it is unlikely to be a competitive antagonist at the platelet thromboxane receptor as suggested by others.  相似文献   

7.
The synthesis and biological activity of novel 1-phenylsulfonyl-4- phenylsulfonylaminopyrrolidine analogues are described. All compounds were produced through modification of the substituent formally corresponding to the 1,3-dioxane ring system and the omega-octenol side chain of thromboxane A(2) (TXA(2)), in reference to the structure of Daltroban. Several compounds were found to be potent TXA(2) receptor antagonists. Compound 51a was the most effective inhibitor of 9,11-epoxymethano PGH(2) (U-46619)-induced rat aortic strip contraction (IC(50)=0.48 nM).  相似文献   

8.
Pulmonary vascular responses to endothelin-2 and sarafotoxin 6b were investigated in the feline pulmonary vascular bed under natural flow and constant flow conditions. Injections of endothelin-2 and sarafotoxin 6b in a dose of 0.3 nmol/kg iv increased pulmonary arterial and left atrial pressures and cardiac output, and caused a biphasic change in calculated pulmonary vascular resistance. Endothelin-2 caused a biphasic change in systemic arterial pressure, while sarafotoxin 6b only decreased arterial pressure. Under constant flow conditions in the intact-chest cat, injections of endothelin-2 and sarafotoxin 6b in doses of 0.1-1 nmol into the perfused lobar artery increased lobar arterial pressure in a dose-related manner but were less potent than the thromboxane A2 mimic, U46619. An ET analog with only the Cys1-Cys15 disulfide bond and an amidated carboxy terminus had no significant activity in the pulmonary vascular bed. The present data show that endothelin-2 and sarafotoxin 6b have significant vasoconstrictor activity in the pulmonary vascular bed of the cat.  相似文献   

9.
The influence of OKY 1581, a thromboxane synthase inhibitor, on airway responses to arachidonic acid and endoperoxide, [prostaglandin (PG) H2], were investigated in anesthetized, paralyzed, mechanically ventilated cats. Intravenous injections of arachidonic acid and PGH2 caused dose-related increases in transpulmonary pressure and lung resistance and decreases in dynamic and static compliance. OKY 1581 significantly decreased airway responses to arachidonic acid but not to PGH2. Sodium meclofenamate, a cyclooxygenase inhibitor, abolished airway responses to arachidonic acid but had no effect on airway responses to PGH2. OKY 1581 or meclofenamate has no effect on airway responses to PGF2 alpha, PGD2, or U 46619, a thromboxane mimic. In microsomal fractions from the lung, OKY 1581 inhibited thromboxane formation without decreasing prostacyclin synthesis or cyclooxygenase activity. These studies show that OKY 1581 is a selective thromboxane synthesis inhibitor in the cat lung and suggest that a substantial part of the bronchoconstrictor response to arachidonic acid is due to thromboxane A2 formation. Moreover, the present data suggest that airway responses to endogenously released and exogenous PGH2 are mediated differently and that a significant part of the response to exogenous PGH2 may be due to activation of an endoperoxide/thromboxane receptor, since responses to PGH2 are blocked by the thromboxane receptor antagonist SQ 29548.  相似文献   

10.
Diethylcarbamazine (DEC) is an inhibitor of lipoxygenase, with protective effects in several experimental models of anaphylaxis and lung dysfunction. The hypothesis of this study was that DEC would alter the pulmonary response to endotoxin infusion, especially the prolonged pulmonary hypertension, leukopenia, hypoxemia, and high flow of protein-rich lung lymph. We prepared sheep for chronic measurements of hemodynamics and collection of lung lymph. In paired studies we gave six sheep endotoxin (0.5 micrograms/kg iv) either with or without DEC. DEC was given (80-100 mg/kg iv) over 30 min followed by a continuous infusion at 1 mg X kg-1 X min-1. Endotoxin was given after the loading infusion of DEC, and variables were monitored for 4 h. The response to endotoxin was characterized by pulmonary hypertension, leukopenia, hypoxemia, and elevations of thromboxane B2 and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha). Lymph flow and protein content reflected hemodynamic and permeability changes in the pulmonary circulation. DEC did not significantly modify the response to endotoxin by any measured variable, including pulmonary arterial and left atrial pressures, cardiac output, lymph flow and protein content, alveolar-to-arterial PO2 difference, blood leukocyte count, and lymph thromboxane B2 and 6-keto-PGF1 alpha. We could not find evidence of release of leukotriene C4/D4 by radioimmunoassay in lung lymph after endotoxin infusion with or without DEC treatment. We conclude that lipoxygenase products of arachidonic acid may not be a major component of the pulmonary vascular response to endotoxin.  相似文献   

11.
The effects of OKY-1581, a thromboxane synthesis inhibitor, on pulmonary vascular responses to arachidonic acid (AA) were investigated under baseline and elevated tone conditions in the intact chest cat. Under conditions of controlled blood flow at baseline tone, intralobar injections of AA increased lobar arterial pressure in a dose-related manner. These pressor responses were reduced by OKY-1581, and a small vasodilator response was unmasked. The administration of indomethacin to these same animals abolished all responses to AA. When baseline tone in the pulmonary vascular bed was elevated by infusion of U46619, intralobar injections of AA caused a biphasic change in lobar arterial pressure characterized by an initial increase followed by a secondary fall in pressure. Treatment with OKY-1581 attenuated the pressor component of the response and enhanced the depressor component of the response. All responses to AA at elevated tone were also blocked by indomethacin. Pressor responses to intralobar injections of U46619 were not altered by OKY-1581 or indomethacin and were similar under baseline and high pulmonary vascular tone conditions. The results of this study suggest that the pulmonary pressor response to AA in the cat is dependent in large part on the formation of TXA2 and also suggest that TXA2, PGI2, and vasoconstrictor prostaglandins (PGF2 alpha, PGD2, PGE2) are formed from AA in the cat lung.  相似文献   

12.
The influence of nisoldipine, a dihydropyridine calcium entry antagonist, on vascular resistance and vasoconstrictor responses was investigated in the feline pulmonary vascular bed under conditions of controlled blood flow. The calcium channel blocking agent caused a small reduction in lobar vascular resistance and blocked pulmonary vasoconstrictor responses to BAY K 8644, an agent which promotes calcium entry. The calcium entry blocking agent also reduced pulmonary vasoconstrictor responses to methoxamine and to BHT 933, alpha 1- and alpha 2-adrenoceptor agonists, and to U 46619, an agent which mimics the actions of thromboxane A2. Although there was a marked difference in vasoconstrictor potency in the pulmonary vascular bed, responses to the thromboxane mimic and to the alpha 1- and alpha 2-adrenoceptor agonists were reduced by approximately the same extent. The increases in systemic arterial pressure in response to BAY K 8644, methoxamine, and BHT 933 were also reduced by nisoldipine, and the calcium entry antagonist reduced systemic arterial pressure and systemic vascular resistance. The results of the present study suggest that an extracellular source of calcium is required for the maintenance of vascular tone and for the expression of vasoconstrictor responses, resulting from activation of alpha 1- and postjunctional alpha 2-adrenoceptors and thromboxane receptors in the feline pulmonary vascular bed.  相似文献   

13.
On the mechanism of prostacyclin and thromboxane A2 biosynthesis   总被引:3,自引:0,他引:3  
The present research describes studies which address the mechanism of prostacyclin (PGI2) and thromboxane A2 (TXA2) biosynthesis. In addition to prostaglandin H1 (PGH1), PGG2, PGH2, and PGH3, also 8-iso-PGH2, 13(S)-hydroxy-PGH2, and 15-keto-PGH2 were applied to determine the substrate specificities and kinetics of prostacyclin and thromboxane synthase in more detail. Human platelet thromboxane synthase converted PGH1, 8-iso-PGH2, 13(S)-hydroxy-PGH2 and 15-keto-PGH2 into the corresponding heptadecanoic acid (C17) plus malondialdehyde, whereas the thromboxane derivative was formed only from PGG2, PGH2, and PGH3 together with the corresponding C17 metabolite and malondialdehyde in a 1:1:1 ratio. In contrast, PGG2, PGH2, 13(S)-hydroxy-PGH2, 15-keto-PGH2 and PGH3 were almost completely isomerized to the corresponding prostacyclin derivative by bovine aortic prostacyclin synthase, whereas PGH1 and 8-iso-PGH2 only produced the corresponding C17 hydroxy acid plus malondialdehyde. Isotope-labeling experiments with [5,6,8,9,11,12,14,15-2H]PGH2 revealed complete retention of label and no isotope effect in the course of thromboxane biosynthesis, but the loss of one 2H atom at C-6 with an isotope effect of 1.20 during PGI2 formation. Prostacyclin and thromboxane synthase bind both 9,11-epoxymethano-PGF2 alpha and 11,9-epoxymethano-PGF2 alpha at the heme iron, but according to their difference spectra in opposite ways with respect to the 9- and 11-position. In agreement with published model studies, a cage radical mechanism is proposed for both enzymes according to which the initial radical process is terminated through oxidation of carbon-centered radicals by the iron-sulfur catalytic site, followed by ionic rearrangement to PGI2 or TXA2. Various Fe(III) model compounds as well as liver microsomes or cytochrome P-450CAM can also form small amounts of PGI2 and TXA2, but mainly yield 12(S)-hydroxy-5,8,10-heptadecatrienoic acid plus malondialdehyde probably by a radical fragmentation pathway.  相似文献   

14.
Homogeneous thromboxane synthase from human platelets converted prostaglandin H2 (PGH2) to thromboxane A2 (measured as thromboxane B2, TxB2), 12(L)-hydroxy-5,8,10-heptadecatrienoic acid (HHT), and malondialdehyde (MDA) in equimolar amounts under a variety of experimental conditions. PGG2 was transformed to MDA and corresponding 15- and 12-hydroperoxy products. PGH1 was enzymatically transformed into 12(L)-hydroxy-8,10-heptadecadienoic acid (HHD) and PGH3 into TxB3 and 12(L)-hydroxy-5,8,10,14-heptadecatetraenoic acid (delta 14-HHT) as earlier reported for solubilized and partially purified thromboxane synthase preparations. The ratio of thromboxane to C17 hydroxy fatty acid formation was 1:1 with PGG2, PGH2, and PGH3 as substrates. These results confirm and extend earlier observations with partially purified enzyme that the three products are formed in a common enzymatic pathway (Diczfalusy, U., Falardeau, P., and Hammarstr?m, S. (1977) FEBS Lett. 84, 271-274). A convenient spectrophotometric assay for thromboxane synthase activity measuring the ultraviolet light absorption of the C17 hydroxy acid formed (e.g., HHT) was developed. The validity of the assay was determined employing specific inhibitors for thromboxane synthase. The substrate specificity of thromboxane synthase was determined using this assay. PGG2 and PGH3 showed Vmax and KM values similar to those of PGH2. The KM value of PGH1 was also identical to that of PGH2 but the Vmax value PGH1 was more than twice as high as that of PGH2.  相似文献   

15.
The effects of PGA1 and PGA2 were studied in the canine pulmonary vascular bed. Infusion of PGA1 into the lobar artery decreased lobar arterial and venous pressure but did not change left atrial pressure. In contrast, PGA2 infusion increased lobar arterial and venous pressure and the effects of this substance were similar in experiments in which the lung was perfused with dextran or with blood. These data indicate that under conditions of controlled blood flow PGA1 decreases pulmonary vascular resistance by dilating intrapulmonary veins and to a lesser extent vessels upstream to the small veins, presumably small arteries. The present data show that PGA2 increases pulmonary vascular resistance by constricting intrapulmonary veins and upstream vessels. The predominant effect of PGA2 was on upstream vessels and the pressor effect was not due to interaction with formed elements in the blood or platelet aggregation.  相似文献   

16.
Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat   总被引:1,自引:0,他引:1  
We investigated the effects of vasoactive intestinal peptide (VIP) in the feline pulmonary vascular bed under conditions of controlled pulmonary blood flow when pulmonary vascular tone was at base-line levels and when vascular resistance was elevated. Under base-line conditions, VIP caused small but significant reductions in lobar arterial pressure without affecting left atrial pressure. Decreases in lobar arterial pressure in response to VIP were greater and were dose related when lobar vascular resistance was increased by intralobar infusion of U 46619, a stable prostaglandin endoperoxide analogue. Acetylcholine and isoproterenol also caused significant decreases in lobar arterial pressure under base-line conditions, and responses to these agents were enhanced when lobar vascular tone was elevated. Moreover, when doses of these agents are expressed in nanomoles, acetylcholine and isoproterenol were more potent than VIP in decreasing lobar arterial pressure. Responses to VIP were longer in duration with a slower onset than were responses to acetylcholine or isoproterenol. Pulmonary vasodilator responses to VIP were unchanged by indomethacin, atropine, or propranolol. The present data demonstrate that VIP has vasodilator activity in the pulmonary vascular bed and that responses are dependent on the existing level of vasoconstrictor tone. These studies indicate that this peptide is less potent than acetylcholine or isoproterenol in dilating the feline pulmonary vascular bed and that responses to VIP are not dependent on a muscarinic or beta-adrenergic mechanism or release of a dilator prostaglandin.  相似文献   

17.
The effects of four F series prostaglandins on the pulmonary vascular bed were compared under conditions of controlled pulmonary blood flow in the intact spontaneously breathing dog. PGF1alpha and PGF2alpha increased lobar arterial pressure whereas PGF1beta and PGF2beta had little if any effect when infused into the lobar artery. The increase in lobar arterial pressure in response to PGF1alpha and PGF2alpha was associated with a significant increase in lobar venous pressure but no change in left atrial pressure. These data indicate that PGF1alpha and PGF2alpha increase pulmonary vascular resistance by constricting lobar veins and vessels upstream to small veins, presumed to be small arteries. It is concluded that in the pulmonary vascular bed the configuration of the hydroxyl group at carbon 9 is an important determinant of pressor activity.  相似文献   

18.
To evaluate pulmonary vasodilation in a structurally altered pulmonary vascular bed, we gave endothelium-dependent (acetylcholine) and endothelium-independent [sodium nitroprusside, prostaglandin I2 (PGI2)] vasodilators in vivo and to isolated lobar pulmonary arteries from neonatal calves with severe pulmonary hypertension. Acetylcholine, administered by pulmonary artery infusion, decreased pulmonary arterial pressure from 120 +/- 7 to 71 +/- 6 mmHg and total pulmonary resistance from 29.4 +/- 2.6 to 10.4 +/- 0.9 mmHg.l-1.min without changing systemic arterial pressure (90 +/- 5 mmHg). Although both sodium nitroprusside and PGI2 lowered pulmonary arterial pressure to 86 +/- 4 and 96 +/- 4 mmHg, respectively, they also decreased systemic arterial pressure to 65 +/- 4 and 74 +/- 3 mmHg, respectively. Neither sodium nitroprusside nor PGI2 was as effective as acetylcholine at lowering total pulmonary resistance (18.0 +/- 3.6 and 19.1 +/- 2.2 mmHg.l-1.min, respectively). Right-to-left cardiac shunt through the foramen ovale was decreased by acetylcholine from 1.6 +/- 0.4 to 0.1 +/- 0.2 l/min but was not changed by sodium nitroprusside or PGI2. Isolated lobar pulmonary arteries from pulmonary hypertensive calves did not relax in response to acetylcholine, whereas isolated pulmonary arteries from age-matched control calves did relax in response to acetylcholine. Control and pulmonary hypertensive lobar pulmonary arteries relaxed equally well in response to sodium nitroprusside. We concluded that acetylcholine vasodilation was impaired in vitro in isolated lobar pulmonary arteries but was enhanced in vivo in resistance pulmonary arteries in neonatal calves with pulmonary hypertension.  相似文献   

19.
Six chronically catheterized sheep were exposed to 1,500-rad whole-lung irradiation and followed for a four-week period. Pulmonary arterial, left atrial and systemic arterial pressures, cardiac output, arterial blood gases, and pH were measured at base line and biweekly following radiation. Pulmonary vasoreactivity to 12% O2, 100% O2, and an analogue of prostaglandin H2 (PGH2-A) was also assessed. Five nonirradiated sheep served as controls. By the 2nd wk following irradiation, pulmonary vascular resistance had doubled. Final pulmonary arterial pressure was increased 50% over the base-line value (base line = 14 +/- 1 cm H2O; final 22 +/- 2; mean +/- SE; P less than 0.05). Arterial PO2 was decreased to approximately 70 Torr throughout the study. In addition, pulmonary vasoreactivity to PGH2-A, but not to breathing 12 or 100% O2, was significantly increased above base line in the irradiated animals (P less than 0.05). Morphometric techniques applied to the lungs in which the pulmonary arterial circulation was distended with barium gelatin mixture, showed extension of muscle into the distal intra-acinar arteries, and a reduction in both the external diameter and the number of barium-filled peripheral arteries in the irradiated animals. Thus thoracic irradiation results in functional and structural changes of chronic pulmonary hypertension and increased pulmonary vasoreactivity to PGH2-A. The structural changes in the peripheral pulmonary arterial bed may contribute to the increased pulmonary vascular reactivity following thoracic irradiation.  相似文献   

20.
Bovine lung thromboxane synthase was immobilized on phenyl-Sepharose beads by adsorption. The immobilized enzyme was catalytically active and synthesized both TXA2 and HHT. The production of both products was inhibited by 1-benzylimidazole and furegrelate. Multiple additions of PGH2 dramatically reduced the ability of the enzyme to synthesize TXA2, but did not effect the synthesis of HHT. In addition, 1-benzylimidazole did not protect thromboxane synthase from inactivation with multiple additions of PGH2. When the enzyme was incubated with PGH2 in the presence of 1-benzylimidazole, the synthesis of TXA2 was inhibited. When the inhibitor was removed the enzyme had still been inactivated by PGH2 in the presence of 1-benzylimidazole. Thus the substrate inactivation of the enzyme does not require the production of TXA2. Our data suggests that the synthesis of TXA2 and HHT can be differentially inactivated and may occur at different sites on the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号