首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome banding in amphibia   总被引:4,自引:1,他引:3  
The distribution of constitutive heterochromatin on the chromosomes of Triturus a. alpestris, T. v. vulgaris and T. h. helveticus (Amphibia, Urodela) was investigated. Sex-specific chromosomes were determined in the karyotypes of T. a. alpestris (chromosomes 4) and T. v. vulgaris (chromosomes 5). The male animals have one heteromorphic chromosome pair, of which only one homologue displays heterochromatic telomeres in the long arms; the telomeres of the other homologue are euchromatic. This chromosome pair is always homomorphic and without telomeric heterochromatin in the female animals. There is a highly reduced crossing-over frequency between the heteromorphic chromosome arms in the male meiosis of T. a. alpestris; in T. v. vulgaris no crossing-over at all occurs between the heteromorphic chromosome arms. No heteromorphisms between the homologues exist on the corresponding lampbrush chromosomes of the female meiosis. In T. h. helveticus no sex-specific heteromorphism of the constitutive heterochromatin could be determined. The male animals of this species, however, already possess a chromosome pair with a greatly reduced frequency of chiasma-formation in the long arms. The C-band patterns and the pairing configurations of the sex-specific chromosomes in the male meiosis indicate an XX/XY-type of sex-determination for the three species. A revision of the literature about experimental interspecies hybridizations, gonadic structure of haploid and polyploid animals, and sex-linked genes yielded further evidence in favor of male heterogamety. The results moreover suggest that the heterochromatinization of the Y-chromosome was the primary step in the evolution of the sex chromosomes.  相似文献   

2.
Cytogenetic or molecular identification of sex chromosomes could help in breeding studies in producing monosex fish stocks, estimating success of androgenesis, gynogenesis, etc. Among fish species sex chromosomes are recognizable in only a few cases. Some populations of rainbow trout Oncorhynchus mykiss show morphologically differentiated sex chromosomes. A strain from Rutki, Poland, showed a heteromorphic pair of subtelocentric chromosome: presumably of the XY type in the male and XX in the female. Restriction endonuclease and DAPI banding resulted in a characteristic banding pattern enabling identification of the X chromosome.  相似文献   

3.
Flowers of three pistillate (female), two heterogametic staminate (male) and two homogametic male genotypes of Asparagus officinalis L. were compared for morphology and vascular anatomy of the flower and for embryological development to the stage of mature ovules and pollen. Flowers are liliaceous, the staminate with rudimentary pistils and the pistillate with collapsed anthers. The uncomplicated vascular pattern differs between staminate and pistillate flowers only in the size and degree of maturation of bundles to stamens and carpels. Longer styles appear to be correlated with a greater extent of ovule development in ovaries of staminate flowers. Microsporogenesis in males is normal with wall development corresponding to the Monocotyledonous type. The tapetum is glandular and binucleate, cytokinesis successive, the tetrads isobilateral or occasionally decussate, and the mature pollen grain two-celled. A pair of heteromorphic, possibly sex, chromosomes was observed in heterogametic male plants. Anther development is initially the same in pistillate flowers, but the tapetum degenerates precociously followed by collapse of microspore mother cells. In pistillate flowers the ovules are hemitropous, bitegmic, and slightly crassinucellate. Megasporogenesis-megagametogenesis conforms to the Polygonum type. In staminate flowers ovule development is like that in pistillate flowers until degeneration starts in nucellar and integumentary cells at the chalazal end. Ovules in both homogametic male genotypes rarely complete meiosis, while in the heterogametic males it is normally completed with about one ovule in 20 flowers forming a mature megagametophyte. Since manipulation of sex expression in Asparagus could be important in developing inbred male and female lines for breeding purposes, those aspects of the morphological and embryological observations presented which might be useful in planning experiments to induce sex changes are discussed briefly.  相似文献   

4.
Asellus aquaticus, a sexually dimorphic isopod crustacean, has no morphologically distinguishable sex chromosome pair. In 25% of the males from a natural population the fluorochrome chromomycin A3 revealed a pair of metacentric chromosomes that was heteromorphic for two heterochromatic areas. One chromosome had a fluorescent band in each of the two arms, whereas the other chromosome lacked both bands. Chromosomal analysis was performed on 50 sibships produced by known parents. The heterochromosome was inherited only by the male offspring of males bearing it. Its distribution led us to postulate the existence of an incipient differentiating sex chromosome pair in the A. aquaticus population.This paper is dedicated to Prof. Guiseppe Montalenti on the occasion of his 80th birthday.  相似文献   

5.
Oestradiol application during embryonic development reverses the sex of male embryos and results in normal female differentiation in reptiles lacking heteromorphic sex chromosomes, but fails to do so in birds and mammals with heteromorphic sex chromosomes. It is not clear whether the evolution of heteromorphic sex chromosomes in amniotes is accompanied by insensitivity to oestradiol, or if the association between oestradiol insensitivity and heteromorphic sex chromosomes can be attributable to phylogenetic constraints in these taxa. Turtles provide an ideal system to examine the potential relationship between oestradiol insensitivity and sex chromosome heteromorphy, since there are species with heteromorphic sex chromosomes that are closely related to species lacking heteromorphic sex chromosomes. We investigated this relationship by examining the long-term effects of oestradiol-17beta application on sex determination in Staurotypus triporcatus and Staurotypus salvinii, two turtle species with male heterogamety. After raising the turtles in the lab for 3 years, we found follicular and Müllerian duct morphology in oestradiol-treated turtles that was identical to that of untreated females. The lasting sex reversal suggests that the evolutionary transition between systems lacking heteromorphic sex chromosomes and those with heteromorphic sex chromosomes is not constrained by a fundamental mechanistic difference.  相似文献   

6.
The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.  相似文献   

7.
Snakes are historically important in the formulation of several central concepts on the evolution of sex chromosomes. For over 50 years, it was believed that all snakes shared the same ZZ/ZW sex chromosomes, which are homomorphic and poorly differentiated in “basal” snakes such as pythons and boas, while heteromorphic and well differentiated in “advanced” (caenophidian) snakes. Recent molecular studies revealed that differentiated sex chromosomes are indeed shared among all families of caenophidian snakes, but that boas and pythons evolved likely independently male heterogamety (XX/XY sex chromosomes). The historical report of heteromorphic ZZ/ZW sex chromosomes in a boid snake was previously regarded as ambiguous. In the current study, we document heteromorphic ZZ/ZW sex chromosomes in a boid snake. A comparative approach suggests that these heteromorphic sex chromosomes evolved very recently and that they are poorly differentiated at the sequence level. Interestingly, two snake lineages with confirmed male heterogamety possess homomorphic sex chromosomes, but heteromorphic sex chromosomes are present in both snake lineages with female heterogamety. We point out that this phenomenon is more common across squamates. The presence of female heterogamety in non‐caenophidian snakes indicates that the evolution of sex chromosomes in this lineage is much more complex than previously thought, making snakes an even better model system for the evolution of sex chromosomes.  相似文献   

8.
Sex chromosomes of the Japanese frog Rana rugosa are heteromorphic in the male (XX/XY) or in the female (ZZ/ZW) in two geographic forms, whereas they are still homomorphic in both sexes in two other forms (Hiroshima and Isehara types). To make clear the origin and differentiation mechanisms of the heteromorphic sex chromosomes, we isolated a sex-linked gene, ADP/ATP translocase, and constructed a phylogenetic tree of the genes derived from the sex chromosomes. The tree shows that the Hiroshima gene diverges first, and the rest form two clusters: one includes the Y and Z genes and the other includes the X, W, and Isehara genes. The Hiroshima gene shares more sequence similarity with the Y and Z genes than with the X, W, and Isehara genes. This suggests that the Y and Z sex chromosomes originate from the Hiroshima type, whereas the X and W chromosomes originate from the Isehara-type sex chromosome. Thus, we infer that hybridization between two ancestral forms, with the Hiroshima-type sex chromosome in one and the Isehara-type sex chromosome in the other, was the primary event causing differentiation of the heteromorphic sex chromosomes.   相似文献   

9.
A new look at the evolution of avian sex chromosomes   总被引:1,自引:0,他引:1  
Birds have a ubiquitous, female heterogametic, ZW sex chromosome system. The current model suggests that the Z chromosome and its degraded partner, the W chromosome, evolved from an ancestral pair of autosomes independently from the mammalian XY male heteromorphic sex chromosomes--which are similar in size, but not gene content (Graves, 1995; Fridolfsson et al., 1998). Furthermore the degradation of the W has been proposed to be progressive, with the basal clade of birds (the ratites) possessing virtually homomorphic sex chromosomes and the more recently derived birds (the carinates) possessing highly heteromorphic sex chromosomes (Ohno, 1967; Solari, 1993). Recent findings have suggested an alternative to independent evolution of bird and mammal chromosomes, in which an XY system took over directly from an ancestral ZW system. Here we examine recent research into avian sex chromosomes and offer alternative suggestions as to their evolution.  相似文献   

10.
The evolution of a pair of chromosomes that differ in appearance between males and females (heteromorphic sex chromosomes) has occurred repeatedly across plants and animals. Recent work has shown that the male heterogametic (XY) and female heterogametic (ZW) sex chromosomes evolved independently from different pairs of homomorphic autosomes in the common ancestor of birds and mammals but also that X and Z chromosomes share many convergent molecular features. However, little is known about how often heteromorphic sex chromosomes have either evolved convergently from different autosomes or in parallel from the same pair of autosomes and how universal patterns of molecular evolution on sex chromosomes really are. Among winged insects with sequenced genomes, there are male heterogametic species in both the Diptera (e.g., Drosophila melanogaster) and the Coleoptera (Tribolium castaneum), female heterogametic species in the Lepidoptera (Bombyx mori), and haplodiploid species in the Hymenoptera (e.g., Nasonia vitripennis). By determining orthologous relationships among genes on the X and Z chromosomes of insects with sequenced genomes, we are able to show that these chromosomes are not homologous to one another but are homologous to autosomes in each of the other species. These results strongly imply that heteromorphic sex chromosomes have evolved independently from different pairs of ancestral chromosomes in each of the insect orders studied. We also find that the convergently evolved X chromosomes of Diptera and Coleoptera share genomic features with each other and with vertebrate X chromosomes, including excess gene movement from the X to the autosomes. However, other patterns of molecular evolution--such as increased codon bias, decreased gene density, and the paucity of male-biased genes on the X--differ among the insect X and Z chromosomes. Our results provide evidence for both differences and nearly universal similarities in patterns of evolution among independently derived sex chromosomes.  相似文献   

11.
Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)   总被引:1,自引:0,他引:1  
Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.  相似文献   

12.
Sexing pollen reveals female bias in a dioecious plant   总被引:2,自引:0,他引:2  
* Information on angiosperm sex ratios has largely been restricted to surveys of flowering individuals. These often deviate from equality, with male bias more commonly reported. Female-biased sex ratios are concentrated in a few taxa and have been linked to the possession of heteromorphic sex chromosomes and bias introduced during the gametophytic stage of the life cycle. It has been proposed that differences in gamete quantity and quality could give rise to female bias, although there is no direct evidence with which to evaluate this possibility. * Here, we use flow cytometry to investigate microgametophytic 'sex ratios' in a flowering plant. We demonstrate that differences in DNA content between the sexes in Rumex nivalis, a species with heteromorphic sex chromosomes, make it possible to distinguish female- vs male-determining pollen nuclei. * We found a small but significant female bias in microgametophytes produced by males (mean 0.515) with significant variation among family means (range 0.463-0.586), and 18 of 22 families averaging > 0.50. * The observed female bias at the gametophytic stage of the life cycle is consistent with the direction of bias previously reported for seeds and vegetative and reproductive plants in wild populations of R. nivalis, but is insufficient to fully explain the degree of bias.  相似文献   

13.
14.
W. Schempp  M. Schmid 《Chromosoma》1981,83(5):697-710
A modified BrdU-Hoechst-Giemsa technique permitted the demonstration of easily reproducible replication patterns in the somatic chromosomes of Amphibia. These banding patterns allow for the first time a precise identification of all chromosomes and the analysis of the patterns of replication in the various stages of S-phase in Amphibia. Several possibilities for the use of this technique were demonstrated on three frog species of the family Ranidae, all differing greatly in their DNA-content. With this method, the homomorphic chromosome pair No. 4 in Rana esculenta could be identified as sex-specific chromosomes of the XX/XY-type. All male animals exhibit an extremely late replicating region in the Y-chromosome, which is lacking in the X-chromosome; in the female animals, both X-chromosomes replicate synchronously. These sex-specific chromosomes cannot be distinguished by other banding techniques. In the highly heteromorphic ZZ/ZW-sex chromosome system of Pyxicephalus adspersus a synchronous replication of the two Z-chromosomes of male animals and a very late replication of the short arm of the W-chromosome of female animals was demonstrated. These results support the assumption that there is no dosage compensation for Z-linked or X-linked genes by the sex chromosome inactivation mechanism in the sex chromosomes of Amphibia.  相似文献   

15.
Specimens from two freshwater populations of the ninespine stickleback Pungitius pungitius in Poland showed morphologically differentiated sex chromosomes. A heteromorphic pair of chromosomes appeared only in male diploid cells. The Y chromosome was the largest chromosome in the P. pungitius karyotype.  相似文献   

16.
H-Y antigen was investigated in three amphibian species with different degrees of sex-chromosome differentiation: Bufo bufo, Triturus vulgaris, and Pyxicephalus adspersus. No heteromorphic sex chromosomes were found in B. bufo, but an examination of the progeny of hermaphrodites (Ponse, 1942) indicated that the female of this species was heterogametic (ZW). Sex chromosomes differing only by a very small heterochromatic region at their telomeres were found in the male of T. vulgaris (XY). Pyxicephalus adspersus revealed high differentiated ZW sex chromosomes. The results of the H-Y antigen studies on these three species indicate that H-Y antigen is expressed only in the heterogametic sex, irrespective of differences in morphological differentiation of the sex chromosomes. Therefore, H-Y antigen could be a valuable tool in determining the heterogametic sex, not only in Amphibia but possibly also in other vertebrate species that have either evolved no heteromorphic sex chromosomes or where sex-reversal experiments are not possible.  相似文献   

17.
Venere PC  Souza IL  Martins C  Oliveira C 《Genetica》2008,133(2):109-112
The karyotypic and chromosomal characteristics of the hatchetfish Thoracocharax stellatus from the Araguaia River, Brazil (Araguaia-Tocantins basin) were analyzed using Giemsa, AgNO(3), and CMA(3) fluorescent staining, and C-banding. The diploid chromosome number was 54 and the karyotypes of females and males were composed of six metacentrics, six submetacentrics, six subtelocentrics and 36 acrocentrics. Two unpaired acrocentric chromosomes were detected in the female karyotype. C-banding showed heterochromatic blocks at several chromosomes and an entirely heterochromatic acrocentric chromosome in females that was lacking in the male karyotype. This discovery indicated a heteromorphic sex chromosome system of the ZZ/ZW type. Ag-staining and CMA(3) fluorescence revealed one major chromosome pair bearing the NORs with the presence of additional signals in some metaphases. Both heterochromatic segments associated with Ag-NORs and the W chromosome were positively stained by CMA(3). Considering the present data and previous findings it is hypothesized that the occurrence of ZW sex chromosome system is widespread in the genus Thoracocharax.  相似文献   

18.
Much of our current state of knowledge concerning sex chromosome evolution is based on a handful of ‘exceptional’ taxa with heteromorphic sex chromosomes. However, classifying the sex chromosome systems of additional species lacking easily identifiable, heteromorphic sex chromosomes is indispensable if we wish to fully understand the genesis, degeneration and turnover of vertebrate sex chromosomes. Squamate reptiles (lizards and snakes) are a potential model clade for studying sex chromosome evolution as they exhibit a suite of sex‐determining modes yet most species lack heteromorphic sex chromosomes. Only three (of 203) chameleon species have identified sex chromosome systems (all with female heterogamety, ZZ/ZW). This study uses a recently developed method to identify sex‐specific genetic markers from restriction site‐associated DNA sequence (RADseq) data, which enables the identification of sex chromosome systems in species lacking heteromorphic sex chromosomes. We used RADseq and subsequent PCR validation to identify an XX/XY sex chromosome system in the veiled chameleon (Chamaeleo calyptratus), revealing a novel transition in sex chromosome systems within the Chamaeleonidae. The sex‐specific genetic markers identified here will be essential in research focused on sex‐specific, comparative, functional and developmental evolutionary questions, further promoting C. calyptratus’ utility as an emerging model organism.  相似文献   

19.
Summary Melandrium album (2n=24), a dioecious species with heteromorphic sex chromosomes (XY, males and XX, females), has a strong genetic commitment for sex determination. We report here a procedure for obtaining haploid plants from cultured anthers and show that genotype, pollen stage, cold treatment and certain culture media components are essential for a reproducible yield of embryos. Our procedure increased the number of responsive anthers and not the number of responsive microspores per anther. Most likely, our experimental system allows the recovery of competent microspores, and this on a medium containing either an auxin or a cytokinin. All of the 36 anther-derived plants tested expressed a female phenotypic sex instead of the theoretical one male one female ratio. When analysed cytologically, the plants exhibited the corresponding female genetic sex (one or two X chromosomes).  相似文献   

20.
The objective of this study was to clarify the course of inversions by which a ZW sex chromosome dimorphism has become established in Rana rugosa. Fortunately, R. rugosa preserves three different forms of sex chromosomes in the several isolated populations. In both males and females, the homomorphic sex chromosomes from Hiroshima were closely similar to Z, while those from Isehara were slightly different from the Z. Females from Hirosaki demonstrated heteromorphic sex chromosomes. In this study, the configuration and pairing behavior of sex lampbrush chromosomes were examined in the female offspring produced from a cross between a female from Hiroshima and a male from Isehara, as well as the female offspring of a female from Hirosaki and the male from Isehara. For the sex lampbrush chromosomes from Hiroshima and Isehara, chiasmata were exclusively formed between the distal regions of the long arms of one sex chromosome and the terminal regions of the short arms of the other. As a result, landmarks arranged in reverse order were observed in the achiasmatic regions of these chromosomes. For the sex lampbrush chromosomes from Isehara and Hirosaki, on the other hand, chiasma formation was mainly confined to the lower half of the chromosomes corresponding to the long arms, and the landmarks in the achiasmatic regions of these chromosomes were disposed in the opposite direction to each other. These results seem to indicate that in the primitive sex chromosomes of the Hiroshima type two pericentric inversions occurred, leading to the differentiation of the W chromosomes. This is the first report to substantiate the process of sex chromosome differentiation experimentally. Received: 10 November 1996; in revised form: 22 April 1997 / Accepted: 24 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号