首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown by titrating a suspension of rat liver mitochondria with either ADP or an uncoupler that a specific rate of respiration may not have a unique associated value of the protonmotive force. Alternatively, a specific protonmotive force may not be associated with a unique rate of respiration. It seems that the rate of respiration and the protonmotive force are more sensitive to the agents used for the titrations than to each other. Such observations are not easily explained by the chemiosmotic hypothesis. It is, however, possible provided that the proton conductivities, i.e. the rates of dissipation of the protonmotive force, are considered to be different for each of the agents used to titrate the rate of respiration at the same protonmotive force, or vice versa.  相似文献   

2.
1. To determine whether controlled (State 4) pyruvate oxidation can support a high energy state, measurements of the redox span NAD-cytochrome c, phosphorylation potential and protonmotive force (the gradient in electrochemical activity of protons across the mitochondrial inner membrane) were made as indices of energy status. For comparison, these three measurements were also made with glycerol 3-phosphate, an alternative substrate. The two substrates gave essentially identical values for the redox span NAD-cytochrome c in State 4, and the phosphorylation potential was of sufficient magnitude to be considered in equilibrium with the redox span over the first two phosphorylation sites. The magnitude of the protonmotive force in State 4 was much less and the implications of this finding are discussed. 2. Measurements made during the controlled (State 4) to active (State 3) transition indicated that with glycerol 3-phosphate as substrate, both the redox span NAD-cytochrome c and the protonmotive force were diminished; the State 4 --> State 3 transition with pyruvate as substrate was accompanied by an increase in the redox span but a decrease in protonmotive force. The contrary behaviour of these two energetic parameters in the presence of pyruvate was ascribed to a transient excess in the flux of protons through the adenosine triphosphatase relative to the protonpumping respiratory chain, in spite of the increased dehydrogenase activity. 3. The lower protonmotive force seen in State 3 relative to State 4 with pyruvate as substrate was due to a diminution of both the electrical (DeltaPsi) and the chemical (DeltapH) components; with glycerol 3-phosphate, the magnitude of the decrease in protonmotive force during the State 4 --> State 3 transition was similar to that seen with pyruvate, but was due to a large decrease in the electrical component (DeltaPsi) and a small rise in the chemical component (DeltapH). The reason for the difference seen in the behaviour of the components of the protonmotive force was investigated but not established. 4. In the presence of oligomycin and ADP, oxidation of pyruvate, but not of glycerol 3-phosphate, supported a greater protonmotive force than in State 4, in keeping with the dehydrogenase activation and increased redox span NAD-cytochrome c found under these conditions. 5. Experiments involving the use of uncoupling agent to stimulate respiration are compared with those in which limiting concentrations of ADP were used. Estimates of the proton conductance of the inner membrane indicate a similar non-linear dependence on uncoupler concentration with the two substrates. 6. A model is proposed as an explanation of the high rates of controlled glycerol 3-phosphate oxidation. The model relies on a high permeability of the inner membrane to protons and other ions being induced by glycerol 3-phosphate oxidation in State 4.  相似文献   

3.
We have determined the relationship between rate of respiration and protonmotive force in oligomycin-inhibited liver mitochondria isolated from euthyroid, hypothyroid and hyperthyroid rats. Respiration rate was titrated with the respiratory-chain inhibitor malonate. At any given respiration rate mitochondria isolated from hypothyroid rats had a protonmotive force greater than mitochondria isolated from euthyroid controls, and mitochondria isolated from hyperthyroid rats had a protonmotive force less than mitochondria isolated from euthyroid controls. In the absence of malonate mitochondrial respiration rate increased in the order hypothyroid less than euthyroid less than hyperthyroid, while protonmotive force increased in the order hyperthyroid less than euthyroid less than hypothyroid. These findings are consistent with a thyroid-hormone-induced increase in the proton conductance of the inner mitochondrial membrane or a decrease in the H+/O ratio of the respiratory chain at any given protonmotive force. Thus the altered proton conductance or H+/O ratio of mitochondria isolated from rats of different thyroid hormone status controls the respiration rate required to balance the backflow of protons across the inner mitochondrial membrane. We discuss the possible relevance of these findings to the control of state 3 and state 4 respiration by thyroid hormone.  相似文献   

4.
The rate of respiration of isolated mitochondria was set at different values by addition of either oligomycin or an ADP-regenerating system (glucose and different amounts of hexokinase). We measured the relationship between respiration rate and membrane potential as respiration was titrated by the addition of malonate under each condition. We used the flux control summation and connectivity theorems and the branching theorem of metabolic control theory to calculate the control over respiration rate exerted by the respiratory chain (and associated reactions), phosphorylating system (and associated reactions) and proton leak at each respiration rate. The analysis also yielded the flux control coefficients of these three reactions over phosphorylation rate and proton leak rate and their concentration control coefficients over protonmotive force. We found that respiration rate was controlled largely by the proton leak under non-phosphorylating conditions, by the phosphorylating system at intermediate rates and by both the phosphorylating system and the respiratory chain in state 3. The rate of phosphorylation was controlled largely by the phosphorylating system itself in state 4 and at intermediate rates, while state 3 control was shared between the phosphorylating system and the respiratory chain; the proton leak had insignificant control. In all states the phosphorylating system had large negative control over the proton leak; the chain and the proton leak both had large positive control coefficients. The protonmotive force was controlled by the chain and by the phosphorylating system; the proton leak had little control.  相似文献   

5.
The TonB system of Escherichia coli (TonB/ExbB/ExbD) transduces the protonmotive force (pmf) of the cytoplasmic membrane to drive active transport by high-affinity outer membrane transporters. In this study, chromosomally encoded ExbD formed formaldehyde-linked complexes with TonB, ExbB and itself (homodimers) in vivo . Pmf was required for detectable cross-linking between TonB–ExbD periplasmic domains. Consistent with that observation, the presence of inactivating transmembrane domain mutations ExbD(D25N) or TonB(H20A) also prevented efficient formaldehyde cross-linking between ExbD and TonB. A specific site of periplasmic interaction occurred between ExbD(A92C) and TonB(A150C) and required functional transmembrane domains in both proteins. Conversely, neither TonB, ExbB nor pmf were required for ExbD dimer formation. These data suggest two possible models where either dynamic complex formation occurred through transmembrane domains or the transmembrane domains of ExbD and TonB configure their respective periplasmic domains. Analysis of T7-tagged ExbD with anti-ExbD antibodies revealed that a T7 tag was responsible both for our previous failure to detect T7–ExbD–ExbB and T7–ExbD–TonB formaldehyde-linked complexes and for the concomitant artefactual appearance of T7–ExbD trimers.  相似文献   

6.
Abstract Proton translocation associated with electron flow to oxygen has been observed with cells of Nitrobacter winogradskyi in the presence of either potassium ferrocyanide or isoascorbate plus N , N , N ', N ' tetramethyl- p -phenylenediamine. The data are consistent with a proton pumping function for the terminal oxidase, cytochrome aa 3, in this organism as the mechanism for generating a protonmotive force. The failure of previous work with Nitrobacter [4] to detect proton translocation linked to oxidation of nitrite, the physiological substrate, is discussed.  相似文献   

7.
The relationship between active transport of lactose via the lactose permease and the protonmotive force has been determined in E. coli cells using either the respiratory chain inhibitor cyanide or protonophores to decrease the protonmotive force progressively. In contradiction with the prediction of the delocalized chemiosmotic theory, two different relationships were obtained depending on the method used.  相似文献   

8.
Membrane vesicles of Escherichia coli can be produced by 2 different methods: lysis of intact cells by passage through a French pressure cell or by osmotic rupturing of spheroplasts. The membrane of vesicles produced by the former method is everted relative to the orientation of the inner membrane in vivo. Using NADH, D-lactate, reduced phenazine methosulfate, or ATP these vesicles produce protonmotive forces, acid and positive inside, as determined using flow dialysis to measured the distribution of the weak base methylamine and the lipophilic anion thiocyanate. The vesicles accumulate calcium using the same energy sources, most likely by a calcium/proton antiport. Calcium accumulation, therefore, is presumably indicative of a proton gradient, acid inside. The latter type of vesicle, on the other hand, exhibits D-lactate-dependent proline transport but does not accumulate calcium with D-lactate as an energy source. NADH oxidation or ATP hydrolysis, however, will drive the transport of calcium but not proline in these vesicles. Oxidation of NADH or hydrolysis of ATP simultaneous with oxidation of D-lactate does not result in either calcium or proline transport. These results suggest that the vesicles are a patchwork or mosiac, in which certain enzyme complexes have an orientation opposite to that found in vivo, resulting in the formation of electrochemical proton gradients with an orientation opposite to that found in the intact cell. Other complexes retain their original orientation, making it possible to set up simultaneous proton fluxes in both directions, causing an apparent uncoupling of energy-linked processes. That the vesicles are capable of generating protonmotive forces of the opposite polarity was demonstrated by measurements of the distribution of acetate and methylamine (to measure the ΔpH) and thiocyanate (to measure the Δψ).  相似文献   

9.
Regulation of succinate dehydrogenase was investigated using tightly coupled potato tuber mitochondria in a novel fashion by simultaneously measuring the oxygen uptake rate and the ubiquinone (Q) reduction level. We found that the activation level of the enzyme is unambiguously reflected by the kinetic dependence of the succinate oxidation rate upon the Q-redox poise. Kinetic results indicated that succinate dehydrogenase is activated by both ATP (K(1/2) approximately 3 microm) and ADP. The carboxyatractyloside insensitivity of these stimulatory effects indicated that they occur at the cytoplasmic side of the mitochondrial inner membrane. Importantly, our novel approach revealed that the enzyme is also activated by oligomycin (K(1/2) approximately 16 nm). Time-resolved kinetic measurements of succinate dehydrogenase activation by succinate furthermore revealed that the activity of the enzyme is negatively affected by potassium. The succinate-induced activation (+/-K(+)) is prevented by the presence of an uncoupler. Together these results demonstrate that in vitro activity of succinate dehydrogenase is modulated by the protonmotive force. We speculate that the widely recognized activation of the enzyme by adenine nucleotides in plants is mediated in this manner. A mechanism that could account for such regulation is suggested and ramifications for its in vivo relevance are discussed.  相似文献   

10.
The fatty acid composition of Streptococcus sanguis NCTC 7865 was not altered by changing the cation composition (Na+/K+) of the growth medium; glucosyltransferase (GTF; EC 2.4.1.5) also remained constant. In contrast, fructosyltransferase (FTF-S; EC 2.4.1.10) production was reduced by at least 50% in medium with a high Na+ concentration. Growth in the presence of ionophores (gramicidin, nigericin or valinomycin) resulted in an increased proportion of saturated fatty acids, principally octadecanoic acid (C18:0), while the proportion of unsaturated fatty acids, predominantly octadecenoic (C18:1) and hexadecenoic (C16:1) acids, decreased. GTF-S production was reduced in the presence of ionophores whereas FTF-S production was completely abolished. Tween 80 significantly increased both GTF-S production and the proportion of unsaturated fatty acids in the cytoplasmic membrane; FTF-S production was unaltered by Tween 80. The production of GTF-S was inversely proportional to the C18:0:C18:1 fatty acid ratio of the cytoplasmic membrane. It was concluded that FTF-S production is directly influenced by protonmotive force (pmf), whereas GTF-S production is affected more by the physical properties of the cytoplasmic membrane, in particular its fatty acid composition. However, as perturbations in pmf generation can lead to variations in membrane fatty acid composition it can be argued that pmf indirectly influences GTF production by changing the saturated:unsaturated or C18:0:C18:1 fatty acid ratio of the cytoplasmic membrane.  相似文献   

11.
12.
13.
The protonmotive force in Staphylococcus aureus.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

14.
The energetic mechanism of preprotein export in Escherichia coli has been a source of controversy for many years. In vitro studies of translocation reactions that use purified soluble and membrane components have not clarified the main features of this mechanism. Translocation occurs through consecutive steps which each have distinct energy requirements. Initiation of translocation requires ATP and the SecA protein. Most of the further steps can be driven by the protonmotive force (delta p).  相似文献   

15.
In Pseudomonas aeruginosa ATCC 10145 a negative correlation was observed between the protonmotive force (delta P) and the amount of exoprotease produced, with a decrease in delta P resulting in an increase in exoprotease. The two components of delta P, the transmembrane pH gradient (delta pH) and the membrane potential (delta psi) were examined independently and it was observed that delta psi varied very little under the conditions which influenced the activities of exoprotease. However, a positive correlation existed between pH and exoprotease production although the intracellular pH varied very little with either changes in growth rate or changes in extracellular pH. It was observed that with a decrease in growth rate, delta pH became more alkaline and increased exoprotease activities were recorded. Furthermore, an increase in extracellular pH to give an artificial alteration in delta pH, and, consequently, a decrease in delta P, increased exoprotease production, thus confirming the importance of delta pH in exoprotease production.  相似文献   

16.
17.
18.
The mitochondrial membrane potential in isolated hepatocytes was measured using the distribution of the lipophilic cation triphenylmethylphosphonium (TPMP+) with appropriate corrections for plasma membrane potential, cytoplasmic and mitochondrial binding of TPMP+, and other factors. The relationship between mitochondrial membrane potential and respiration rate in hepatocytes was examined as the respiratory chain was titrated with myxothiazol in the presence of oligomycin. This relationship was nonproportional and similar to results with isolated mitochondria respiring on succinate. This shows that there is an increased proton conductance of the mitochondrial inner membrane in situ at high values of membrane potential. From the respiration rate and mitochondrial membrane potential of hepatocytes in the absence of oligomycin, we estimate that the passive proton permeability of the mitochondrial inner membrane accounts for 20-40% of the basal respiration rate of hepatocytes. The relationship between log[TPMP+]tot/[TPMP+]e and respiration rate in thymocytes was also nonproportional suggesting that the phenomenon is not peculiar to hepatocytes. There is less mitochondrial proton leak in hepatocytes from hypothyroid rats. A large proportion of the difference in basal respiration rate between hepatocytes from normal and hypothyroid rats can be accounted for by differences in the proton permeability characteristics of the mitochondrial inner membrane.  相似文献   

19.
Adenosine 5'-triphosphate (ATP) synthesis energized by an artificially imposed protonmotive force (delta p) in adenosine 5'-diphosphate-loaded membrane vesicles of Escherichia coli was investigated. The protonmotive force is composed of an artificially imposed pH gradient (delta pH) or membrane potential (deltapsi), or both. A delta pH was established by a rapid alteration of the pH of the assay medium. A delta psi was created by the establishment of diffusion potential of K+ in the presence of valinomycin. The maximal amount of ATP synthesized was 0.4 to 0.5 nmol/mg of membrane protein when energized by a delta pH and 0.2 to 0.3 nmol/mg of membrane protein when a delta psi was imposed. Simultaneous imposition of both a delta pH and delta psi resulted in the formation of greater amounts of ATP (0.8 nmol/mg of membrane protein) than with either alone. The amount of ATP synthesized was roughly proportional to the magnitude of the artificially imposed delta p. Although p-chloromercuribenzoate, 2-heptyl-4-hydroxyquinoline-N-oxide, or NaCN each inhibits oxidation of D-lactate, and thus oxidative phosphorylation, none inhibited ATP synthesis driven by an artificially imposed delta p. Membrane vesicles prepared from uncA or uncB strains, which are defective in oxidative phosphorylation, likewise were unable to catalyze ATP synthesis when energy was supplied by an artificially imposed delta p.  相似文献   

20.
Very little is known about the biogenesis and assembly of oligomeric membrane proteins. In this study, the biogenesis of KcsA, a prokaryotic homotetrameric potassium channel, is investigated. Using in vivo pulse–chase experiments, both the monomeric and tetrameric form could be identified. The conversion of monomers into a tetramer is found to be a highly efficient process that occurs in the Escherichia coli inner membrane. KcsA does not require ATP hydrolysis by SecA for insertion or tetramerization. The presence of the protonmotive force (pmf) is not necessary for transmembrane insertion of KcsA; however, the pmf proved to be essential for the efficiency of oligomerization. From in vivo and in vitro experiments it is concluded that the electrical component, Δψ, is the main determinant for this effect. These results demonstrate a new role of the pmf in membrane protein biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号