首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The putative glgX gene encoding isoamylase-type debranching enzyme was isolated from the cyanobacterium, Synechococcus elongatus PCC 7942. The deduced amino acid sequence indicated that the residues essential to the catalytic activity and substrate binding in bacterial and plant isoamylases and GlgX proteins were all conserved in the GlgX protein of S. elongatus PCC 7942. The role of GlgX in the cyanobacterium was examined by insertional inactivation of the gene. Disruption of the glgX gene resulted in the enhanced fluctuation of glycogen content in the cells during light-dark cycles of the culture, although the effect was marginal. The glycogen of the glgX mutant was enriched with very short chains with degree of polymerization 2 to 4. When the mutant was transformed with putative glgX genes of Synechocystis sp. PCC 6803, the short chains were decreased as compared to the parental mutant strain. The result indicated that GlgX protein contributes to form the branching pattern of polysaccharide in S. elongatus PCC 7942.  相似文献   

2.
3.
4.
The two closely related fresh water cyanobacteria Synechococcus elongatus PCC 6301 and Synechococcus elongatus PCC 7942 have previously been shown to constitutively express a FAD-containing L-amino acid oxidase with high specificity for basic L-amino acids (L-arginine being the best substrate). In this paper we show that such an enzyme is also present in the fresh water cyanobacterium Synechococcus cedrorum PCC 6908. In addition, an improved evaluation of the nucleotide/amino acid sequence of the L-amino acid oxidase of Synechococcus elongatus PCC 6301 (encoded by the aoxA gene) with respect to the FAD-binding site and a translocation pathway signal sequence will be given. Moreover, the genome sequences of 24 cyanobacteria will be evaluated for the occurrence of an aoxA-similar gene. In the evaluated cyanobacteria 15 genes encoding an L-amino acid oxidase-similar protein will be found.  相似文献   

5.
6.
7.
Synechococcus elongatus PCC 7942 has been widely explored as cyanobacterial cell factory through genetic modifications for production of various value‐added compounds. However, successful industrial scale‐ups have not been reported for the system predominantly due to its obligate photoautotrophic metabolism and use of artificial light in photobioreactors. Hence, engineering the organism to perform mixotrophy under natural light could serve as an effective solution. Thus, we applied a genetically engineered strain of Synechococcus elongatus PCC 7942 expressing heterologous hexose transporter gene (galP) to perform mixotrophy under natural light in a temperature controlled environmental chamber (EC). We systematically studied the comparative performances of these transformants using autotrophy and mixotrophy, which showed 3.4 times increase in biomass productivity of mixotrophically grown transformants over autotrophs in EC. Chlorophyll a yield was found to have decreased in mixotrophic conditions, possibly indicating reduced dependency on light for energy metabolism. Although pigment yield decreases under mixotrophy, titer was found to have improved due to increased biomass productivity. Carotenoid analysis showed that zeaxanthin is the major carotenoid produced by the species which is essential for photoprotection. Our work thus demonstrates that mixotrophy under temperature controlled natural light can serve as the viable solution to improve biomass productivity of Synechococcus elongatus PCC 7942 and for commercial production of natural or engineered value added compounds from the system. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1182–1192, 2017  相似文献   

8.
9.
In an effort to understand the mechanism of streptomycin resistance in Nicotiana plumbaginifolia, we have sequenced the chloroplast rps12 gene, a potential molecular target. We report that a streptomycin-resistant mutant isolated from protoplast cultures of N. plumbaginifolia contains an A-to-G transition at nucleotide position 149 in exon 2 of the chloroplast rps12 gene. The detected point mutation predicts a substitution of arginine for lysine in a phylogenetically conserved region.  相似文献   

10.
11.
Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite reductase was also insensitive to ammonium. The inhibition of nitrate and nitrite transport required the PII protein (glnB gene product) and the C-terminal domain of NrtC, one of the two ATP-binding subunits of the transporter, as in the Synechococcus strain. Mutants expressing the PII derivatives in which Ala or Glu is substituted for the conserved Ser49, which has been shown to be the phosphorylation site in the Synechococcus strain, showed ammonium-promoted inhibition of nitrate uptake like that of the wild-type strain. The S49A and S49E substitutions in GlnB did not affect the regulation of the nitrate and nitrite transporter in Synechococcus either. These results indicated that the presence or absence of negative electric charge at the 49th position does not affect the activity of the PII protein to regulate the cyanobacterial ABC-type nitrate and nitrite transporter according to the cellular nitrogen status. This finding suggested that the permanent inhibition of nitrate assimilation by an S49A derivative of PII, as was previously reported for Synechococcus elongatus strain PCC 7942, is likely to have resulted from inhibition of nitrate reductase rather than the nitrate and nitrite transporter.  相似文献   

12.
We developed a versatile, efficient genetic transfer method for Synechococcus sp. strains PCC 7942 and PCC 6301 that exceeds natural transformation efficiencies by orders of magnitude. As a test case, we complemented a histidine auxotroph and identified a hisS homolog of PCC 7942 as the complementing gene.  相似文献   

13.
Min H  Golden SS 《Journal of bacteriology》2000,182(21):6214-6221
Gene expression in the cyanobacterium Synechococcus elongatus PCC 7942 is under the control of a circadian oscillator, such that peaks and troughs of expression recur with a periodicity of about 24 h in the absence of environmental cues. This can be monitored easily as light production from luciferase gene fusions to S. elongatus promoters. All promoters seem to exhibit circadian oscillation of expression, but the phasing of peak and trough times differs among different genes. The majority of genes are designated class 1, with expression peaks near dusk or subjective dusk (the time corresponding to dusk in the absence of a diurnal cycle). A minority, of which purF is an example, have expression peaks approximately 12 h out of phase with class 1 genes. A screen of Tn5 mutants for those in which purF phasing is altered revealed a mutant that carries an insertion in the opcA gene, previously identified as essential for glucose-6-phosphate dehydrogenase function. However, a different enzymatic reporter and in vitro luciferase assays revealed that the expression pattern of the purF promoter is not altered by opcA inactivation, but rather the reduced flavin mononucleotide substrate of luciferase is limiting at the time of the natural circadian peak. The results suggest that OpcA is involved in temporally separated reductant-generating pathways in S. elongatus and that it has a role outside of its function in activating glucose-6-phosphate dehydrogenase. The opcA gene, expected to be cotranscribed with fbp and zwf, was shown to have its own class 2 promoter, whereas the fbp promoter was determined to be in class 1. Thus, opcA expression is likely to be constitutive by virtue of the activity of two promoters in nearly opposite circadian phases.  相似文献   

14.
New cyanobacterial expression vectors, possessing an origin of replication that functions in a broad range of Gram-negative bacteria, were constructed. To inspect the shuttle vectors, the gene gfp was cloned downstream from the expression control element (ECE) originating from the regulatory region of the Microcystis aeruginosa gene psbA2 (for photosystem II D1 protein), and the vectors were introduced into three kinds of cyanobacteria (Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942, and Limnothrix/Pseudanabaena sp. ABRG5-3) by conjugation. Multiple copy numbers of the expression vectors (in the range of 14-25 copies per cell) and a high expression of green fluorescent protein (GFP) at the RNA/protein level were observed in the cyanobacterial transconjugants. Importantly, GFP was observed in a supernatant from the autolysed transconjugants of ABRG5-3 and easily collected from the supernatant without centrifugation and/or further cell lysis. These results indicate the vectors together with the recombinant cells to be useful for overproducing and recovering target gene products from cyanobacteria.  相似文献   

15.
16.
While bacteria such as Escherichia coli and Bacillus subtilis harbour a single circular chromosome, some freshwater cyanobacteria have multiple chromosomes p er cell. The detailed mechanism(s) of cyanobacterialreplication remains unclear. To elucidate the replication origin (ori ), form and synchrony of the multi-copy genome in freshwater cyanobacteria Synechococcus elongatus PCC 7942 we constructed strain S. 7942TK that can incorporate 5-bromo-2'- deoxyuridine (BrdU) into genomic DNA and analysed its de novo DNA synthesis. The uptake of BrdU was blocked under dark and resumed after transfer of the culture to light conditions. Mapping analysis of nascent DNA fragments using a next-generation sequencer indicated that replication starts bidirectionally from a single ori, which locates in the upstream region of the dnaN gene. Quantitative analysis of BrdU-labelled DNA and whole-genome sequence analysis indicated that the peak timing of replication precedes that of cell division and that replication is initiated asynchronously not only among cell populations but also among the multi-copy chromosomes. Our findings suggest that replication initiation is regulated less stringently in S. 7942 than in E. coli and B. subtilis.  相似文献   

17.
Synechococcus elongatus PCC 7942 was able to grow with several S sources. The sulphur metabolizing enzymes viz. ATP sulphurylase, cysteine synthase, thiosulphate reductase and L- and D-cysteine desulphydrases were regulated by sulphur sources, particularly by sulphur amino acids and organic sulphate esters. Sulphur starvation reduced ATP sulphurylase and cysteine synthase whereas reduced glutathione appreciated Cys degradation activity. With partially purified enzymes apparent Km values for sulphate, ATP, D- and L-Cys, thiosulphate, sulphide and O-acetyl serine were in a range of 12-50 microM. p-Nitrophenyl sulphate inhibited ATP sulphurylase competitively. Met was a feedback inhibitor of several key enzymes.  相似文献   

18.
The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel production.  相似文献   

19.
Production of chemicals directly from carbon dioxide using light energy is an attractive option for a sustainable future. The 1,3-propanediol (1,3-PDO) production directly from carbon dioxide was achieved by engineered Synechococcus elongatus PCC 7942 with a synthetic metabolic pathway. Glycerol dehydratase catalyzing the conversion of glycerol to 3-hydroxypropionaldehyde in a coenzyme B12-dependent manner worked in S. elongatus PCC 7942 without addition of vitamin B12, suggesting that the intrinsic pseudovitamin B12 served as a substitute of coenzyme B12. The highest titers of 1,3-PDO (3.79±0.23 mM; 288±17.7 mg/L) and glycerol (12.62±1.55 mM; 1.16±0.14 g/L), precursor of 1,3-PDO, were reached after 14 days of culture under optimized conditions in this study.  相似文献   

20.
The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S. elongatus, have an ATP-binding cassette (ABC)-type NRT, the NRT of N. punctiforme belongs to the major facilitator superfamily, being orthologous to the one found in marine cyanobacteria (NrtP). Unlike the ABC-type NRT, which transports both nitrate and nitrite with high affinity, Nostoc NrtP transported nitrate preferentially over nitrite. NrtP was distinct from ABC-type NRT also in its insensitivity to ammonium-promoted regulation at the post-translational level. The nitrate reductase of N. punctiforme was, on the other hand, inhibited upon addition of ammonium to medium, lending ammonium sensitivity to nitrate assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号