首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The familial Alzheimer's disease gene products, presenilin-1 and presenilin-2, have been reported to be functionally involved in amyloid precursor protein processing, notch receptor signaling, and programmed cell death or apoptosis. However, the molecular mechanisms by which presenilins regulate these processes remain unknown. With regard to the latter, we describe a molecular link between presenilins and the apoptotic pathway. Bcl-X(L), an anti-apoptotic member of the Bcl-2 family was shown to interact with the carboxyl-terminal fragments of PS1 and PS2 by the yeast two-hybrid system. In vivo interaction analysis revealed that both PS2 and its naturally occurring carboxyl-terminal products, PS2short and PS2Ccas, associated with Bcl-X(L), whereas the caspase-3-generated amino-terminal PS2Ncas fragment did not. This interaction was corroborated by demonstrating that Bcl-X(L) and PS2 partially co-localized to sites of the vesicular transport system. Functional analysis revealed that presenilins can influence mitochondrial-dependent apoptotic activities, such as cytochrome c release and Bax-mediated apoptosis. Together, these data support a possible role of the Alzheimer's presenilins in modulating the anti-apoptotic effects of Bcl-X(L).  相似文献   

2.
Neurons bearing presenilins: weapons for defense or suicide?   总被引:4,自引:2,他引:2  
Apoptotic machinery designed for cell's organized self-destruction involve different systems of proteases which cleave vital proteins and disassemble nuclear and cytoplasmic structures, committing the cell to death. The most studied apoptotic proteolytic system is the caspase family, but calpains and the proteasome could play important roles as well. Alzheimer's disease associated presenilins showed to be a substrate for such proteolytic systems, being processed early in several apoptotic models, and recent data suggest that alternative presenilin fragments could regulate cell survival. Mutations in genes encoding presenilins proved to sensitize neurons to apoptosis by different mechanisms e.g. increased caspase-3 activation, oxyradicals production and calcium signaling dysregulation. Here we review the data involving presenilins in apoptosis and discuss a possible role of presenilins in the regulation of apoptotic biochemical machinery.  相似文献   

3.
The amyloid-beta precursor protein (APP) is directly and efficiently cleaved by caspases during apoptosis, resulting in elevated amyloid-beta (A beta) peptide formation. The predominant site of caspase-mediated proteolysis is within the cytoplasmic tail of APP, and cleavage at this site occurs in hippocampal neurons in vivo following acute excitotoxic or ischemic brain injury. Caspase-3 is the predominant caspase involved in APP cleavage, consistent with its marked elevation in dying neurons of Alzheimer's disease brains and colocalization of its APP cleavage product with A beta in senile plaques. Caspases thus appear to play a dual role in proteolytic processing of APP and the resulting propensity for A beta peptide formation, as well as in the ultimate apoptotic death of neurons in Alzheimer's disease.  相似文献   

4.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

5.
Early onset familial Alzheimer's disease (FAD) is linked to autosomal dominant mutations in the amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2) genes. These are critical mediators of total amyloid beta-peptide (Abeta) production, inducing cell death through uncertain mechanisms. Tauroursodeoxycholic acid (TUDCA) modulates exogenous Abeta-induced apoptosis by interfering with E2F-1/p53/Bax. Here, we used mouse neuroblastoma cells that express either wild-type APP, APP with the Swedish mutation (APPswe), or double-mutated human APP and PS1 (APPswe/DeltaE9), all exhibiting increased Abeta production and aggregation. Cell viability was decreased in APPswe and APPswe/DeltaE9 but was partially reversed by z-VAD.fmk. Nuclear fragmentation and caspase 2, 6 and 8 activation were also readily detected. TUDCA reduced nuclear fragmentation as well as caspase 2 and 6, but not caspase 8 activities. p53 activity, and Bcl-2 and Bax changes, were also modulated by TUDCA. Overexpression of p53, but not mutant p53, in wild-type and mutant neuroblastoma cells was sufficient to induce apoptosis, which, in turn, was reduced by TUDCA. In addition, inhibition of the phosphatidylinositide 3'-OH kinase pathway reduced TUDCA protection against p53-induced apoptosis. In conclusion, FAD mutations are associated with the activation of classical apoptotic pathways. TUDCA reduces p53-induced apoptosis and modulates expression of Bcl-2 family.  相似文献   

6.
Presenilins are mutated in most cases of autosomal dominant inherited forms of early onset Alzheimer's disease and such mutations are known to sensitize cells to apoptotic stimuli in vitro. Previous studies show that presenilins are primarily located in the endoplasmatic reticulum and cell membranes. Here we report, based on immunoblot analysis and immunoelectron microscopy studies, that PS1 is also located in mitochondrial membranes. For these studies we used tissue sections and subcellular fractions of rat brain and liver. Immunogold labeling of sections show that PS1 is predominantly located in the inner membrane of mitochondria. The function of PS1 in mitochondrial membranes is presently unknown. PS1 mutations may make cells more vulnerable to apoptotic stimuli due to dysfunction of this protein at the mitochondrial level.  相似文献   

7.
8.
Non-amyloidogenic alpha-secretase processing of amyloid precursor protein (APP) is stimulated by protein kinase C (PKC). Levels and activity of PKC are decreased in sporadic Alzheimer's disease skin fibroblasts. We investigated whether alterations in PKC and PKC-mediated APP processing occur also in fibroblasts established from individuals with familial Alzheimer's disease APP KM670/671NL, PS1 M146V and H163Y mutations. These pathogenic mutations are known to alter APP metabolism to increase Abeta. PKC activities, but not levels, were decreased by 50% in soluble fractions from sporadic Alzheimer's disease cases. In contrast, familial Alzheimer's disease fibroblasts showed no significant changes in PKC enzyme activity. Fibroblasts bearing the APP KM670/671NL mutation showed no significant differences in either PKC levels or PKC-mediated soluble APP (APPs) secretion, compared to controls. Fibroblasts bearing PS1 M146V and H163Y mutations showed a 30% increase in soluble PKC levels and a 40% decrease in PKC-mediated APPs secretion. These results indicate that PKC deficits are unlikely to contribute to increased Abeta seen with APP and PS1 mutations, and also that PS1 mutations decrease alpha-secretase derived APPs production independently of altered PKC activity.  相似文献   

9.
The discovery that a deficiency of presenilin 1 (PS1) decreases the production of amyloid beta-protein (Abeta) identified the presenilins as important mediators of the gamma-secretase cleavage of beta-amyloid precursor protein (APP). Recently, we found that two conserved transmembrane (TM) aspartates in PS1 are critical for Abeta production, providing evidence that PS1 either functions as a required diaspartyl cofactor for gamma-secretase or is itself gamma-secretase. Presenilin 2 (PS2) shares substantial sequence and possibly functional homology with PS1. Here, we show that the two TM aspartates in PS2 are also critical for gamma-secretase activity, providing further evidence that PS2 is functionally homologous to PS1. Cells stably co-expressing TM Asp --> Ala mutations in both PS1 and PS2 show further accumulation of the APP-derived gamma-secretase substrates, C83 and C99. The production of Abeta is reduced to undetectable levels in the conditioned media of these cells. Furthermore, endoproteolysis of the exogenous Asp mutant PS2 is absent, and endogenous PS1 C-terminal fragments are diminished to undetectable levels. Therefore, the co-expression of PS1 and PS2 TM Asp --> Ala mutants suppresses the formation of any detectable PS1 or PS2 heterodimeric fragments and essentially abolishes the production of Abeta. These results explain the residual Abeta production seen in PS1-deficient cells and demonstrate the absolute requirement of functional presenilins for Abeta generation. We conclude that presenilins, and their TM aspartates in particular, are attractive targets for lowering Abeta therapeutically to prevent Alzheimer's disease.  相似文献   

10.
Missense mutations in the human presenilin-1 (PS1) gene, which is found on chromosome 14, cause early-onset familial Alzheimer's disease (FAD). FAD-linked PS1 variants alter proteolytic processing of the amyloid precursor protein and cause an increase in vulnerability to apoptosis induced by various cell stresses. However, the mechanisms responsible for these phenomena are not clear. Here we report that mutations in PS1 affect the unfolded-protein response (UPR), which responds to the increased amount of unfolded proteins that accumulate in the endoplasmic reticulum (ER) under conditions that cause ER stress. PS1 mutations also lead to decreased expression of GRP78/Bip, a molecular chaperone, present in the ER, that can enable protein folding. Interestingly, GRP78 levels are reduced in the brains of Alzheimer's disease patients. The downregulation of UPR signalling by PS1 mutations is caused by disturbed function of IRE1, which is the proximal sensor of conditions in the ER lumen. Overexpression of GRP78 in neuroblastoma cells bearing PS1 mutants almost completely restores resistance to ER stress to the level of cells expressing wild-type PS1. These results show that mutations in PS1 may increase vulnerability to ER stress by altering the UPR signalling pathway.  相似文献   

11.
Secretases degrade amyloid precursor protein (APP) releasing fragments (-peptides A, Ax) that assemble to form hallmark extracellular deposits in Alzheimer's disease (AD) correlating with disease severity. As such, secretases supply targets for therapeutic intervention and form the focus of this overview. Progress in elucidating secretases and their modes of catalysis come from exploiting the use of transgenics or transfected cells. In addition to Ax, secretases also release C-terminal fragments with putative signaling properties (amyloid intracellular domain, AICD) similar in concept to those available for conversion of the Notch-r to release the nuclear transactivator NICD. The review considers lingering questions on APP fragmentation by secretase action, ancillary proteins such as presenilins (PS1/2), nicastrin, XII, or proteases (caspases), and the influence of familial mutations (mAPP, mPS) in terms of fibrillogenesis.  相似文献   

12.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

13.
gamma-Secretase is a key enzyme involved in the processing of the beta-amyloid precursor protein into amyloid beta-peptides (Abeta). Abeta accumulates and forms plaques in Alzheimer's disease (AD) brains. A progressive neurodegeneration and cognitive decline occurs during the course of the disease, and Abeta is believed to be central for the molecular pathogenesis of AD. Apoptosis has been implicated as one of the mechanisms behind the neuronal cell loss seen in AD. We have studied preservation and activity of the gamma-secretase complex during apoptosis in neuroblastoma cells (SH-SY5Y) exposed to staurosporine (STS). We report that the known components (presenilin, Nicastrin, Aph-1 and Pen-2) interact and form active gamma-secretase complexes in apoptotic cells. In addition, the fragments corresponding to the PS1 N-terminal fragment and the caspase-cleaved PS1 C-terminal fragment (PS1-caspCTF) were found to form active gamma-secretase complexes when co-expressed in presenilin (PS) knockout cells. Interestingly, PS1-caspCTF replaced the normal PS1 C-terminal fragment and was co-immunoprecipitated with the gamma-secretase complex in SH-SY5Y cells exposed to STS. In addition, Abeta was detected in medium from apoptotic HEK APP(swe) cells. Together, the data show that gamma-secretase complexes containing PS1-caspCTF are active, and suggest that this proteolytic activity is also important in dying cells and may affect the progression of AD.  相似文献   

14.
15.
Presenilin-1 (PS1) is thought to regulate cell differentiation and survival by modulating the Notch signaling pathway. Mutations in PS1 have been shown to cause early-onset inherited forms of Alzheimer's disease (AD) by a gain-of-function mechanism that alters proteolytic processing of the amyloid precursor protein (APP) resulting in increased production of neurotoxic forms of amyloid beta-peptide. The present article considers a second pathogenic mode of action of PS1 mutations, a defect in cellular calcium signaling characterized by overfilling of endoplasmic reticulum (ER) calcium stores and altered capacitive calcium entry; this abnormality may impair synaptic plasticity and sensitize neurons to apoptosis and excitotoxicity. The calcium signaling defect has also been documented in lymphocytes, suggesting a contribution of immune dysfunction to the pathogenesis of AD. A better understanding of the calcium signaling defect resulting from PS1 mutations may lead to the development of novel preventative and therapeutic strategies for disorders of the nervous and immune systems.  相似文献   

16.
Mutations in human presenilin (PS) genes cause aggressive forms of familial Alzheimer's disease. Presenilins are polytopic proteins that harbour the catalytic site of the gamma-secretase complex and cleave many type I transmembrane proteins including beta-amyloid precursor protein (APP), Notch and syndecan 3. Contradictory results have been published concerning whether PS mutations cause 'abnormal' gain or (partial) loss of function of gamma-secretase. To avoid the possibility that wild-type PS confounds the interpretation of the results, we used presenilin-deficient cells to analyse the effects of different clinical mutations on APP, Notch, syndecan 3 and N-cadherin substrate processing, and on gamma-secretase complex formation. A loss in APP and Notch substrate processing at epsilon and S3 cleavage sites was observed with all presenilin mutants, whereas APP processing at the gamma site was affected in variable ways. PS1-Delta9 and PS1-L166P mutations caused a reduction in beta-amyloid peptide Abeta40 production whereas PS1-G384A mutant significantly increased Abeta42. Interestingly PS2, a close homologue of PS1, appeared to be a less efficient producer of Abeta than PS1. Finally, subtle differences in gamma-secretase complex assembly were observed. Overall, our results indicate that the different mutations in PS affect gamma-secretase structure or function in multiple ways.  相似文献   

17.
The amyloid precursor protein (APP) is a transmembrane protein whose abnormal processing is associated with the pathogenesis of Alzheimer's disease. In this study, we examined the expression and role of cell-associated APP in primary dorsal root ganglion (DRG) neurons. When dissociated DRG cells prepared from mouse embryos were treated with nerve growth factor (NGF), neuronal APP levels were transiently elevated. DRG neurons treated with an antibody against cell surface APP failed to mature and underwent apoptosis. When NGF was withdrawn from the cultures after a 36-h NGF treatment, virtually all neurons underwent apoptosis by 48 h. During the course of apoptosis, some neurons with intact morphology contained increased levels of APP immunoreactivity, whereas the APP levels were greatly reduced in apoptotic neurons. Furthermore, affected neurons contained immunoreactivities for activated caspase-3, a caspase-cleaved APP fragment (APPDeltaC31), and Abeta. Downregulation of endogenous APP expression by treatment with an APP antisense oligodeoxynucleotide significantly increased the number of apoptotic neurons in NGF-deprived DRG cultures. Furthermore, overexpression of APP by adenovirus vector-mediated gene transfer reduced the number of apoptotic neurons deprived of NGF. These results suggest that endogenous APP is upregulated to exert an antiapoptotic effect on neurotrophin-deprived DRG neurons and subsequently undergoes caspase-dependent proteolysis.  相似文献   

18.
Familial Alzheimer's disease mutations in the presenilin 1 gene (PSEN1) have been previously shown to potentiate caspase activation and apoptosis in transfected cells and transgenic mice. However, the mechanism underlying this effect is not known. We set out to determine whether cellular sensitivity to caspase activation could be affected by modulating presenilin 1 (PS1) processing. PS1 processing was altered using RNA interference (RNAi) aimed at silencing the expression of the genes encoding the four components of the gamma-secretase complex, PSEN1, APH-1, PEN-2, and nicastrin. RNAi for these genes was carried out in naive H4 human neuroglioma cells, as well as H4 cell lines overexpressing either wild-type PSEN1 or the Familial Alzheimer's disease mutant PSEN1-Delta9 (PS1-mutant), that were induced to undergo apoptosis. In wild-type PSEN1 cells, RNAi for PEN-2, as expected, increased levels of full-length PS1 (PS1-FL) and decreased PS1 endoproteolysis. This was accompanied by potentiated caspase-3 activation in response to an apoptotic stimulus. In contrast, nicastrin RNAi, which only decreased levels of PS1-amino-terminal fragment and did not affect PS1-FL levels, had no effect on caspase-3 activation during apoptosis. Surprisingly, in the PS1-mutant cells, RNAi for PEN-2 (and APH-1) did not increase but instead reduced the levels of PS1-FL deleted for exon 9. In turn, this was accompanied by attenuated caspase-3 activation in response to an apoptotic stimulus. Finally, in naive H4 cells, PSEN1 RNAi also attenuated caspase-3 activation in response to an apoptotic stimulus. Collectively, these findings indicate that cellular sensitivity to caspase activation correlates with overall PS1 protein levels, particularly with levels of FL-PS1.  相似文献   

19.
The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity   总被引:10,自引:0,他引:10  
Presenilin mutations are responsible for most cases of autosomal dominant inherited forms of early onset Alzheimer disease. Presenilins play an important role in amyloid beta-precursor processing, NOTCH receptor signaling, and apoptosis. However, the molecular mechanisms by which presenilins regulate apoptosis are not fully understood. Here, we report that presenilin-1 (PS1) regulates the proteolytic activity of the serine protease Omi/HtrA2 through direct interaction with its regulatory PDZ domain. We show that a peptide corresponding to the cytoplasmic C-terminal tail of PS1 dramatically increases the proteolytic activity of Omi/HtrA2 toward the inhibitor of apoptosis proteins and beta-casein and induces cell death in an Omi/HtrA2-dependent manner. Consistent with these results, ectopic expression of full-length PS1, but not PS1 lacking the C-terminal PDZ binding motif, potentiated Omi/HtrA2-induced cell death. Our results suggest that the C terminus of PS1 is an activation peptide ligand for the PDZ domain of Omi/HtrA2 and may regulate the protease activity of Omi/HtrA2 after its release from the mitochondria during apoptosis. This mechanism of Omi/HtrA2 activation is similar to the mechanism of activation of the related bacterial DegS protease by the outer-membrane porins.  相似文献   

20.
Presenilins (PS1/PS2) play a critical role in proteolysis of beta-amyloid precursor protein (beta APP) to generate beta-amyloid, a peptide important in the pathogenesis of Alzheimer's disease. Nevertheless, several regulatory functions of PS1 have also been reported. Here we demonstrate, in neuroblastoma cells, that PS1 regulates the biogenesis of beta APP-containing vesicles from the trans-Golgi network and the endoplasmic reticulum. PS1 deficiency or the expression of loss-of-function variants leads to robust vesicle formation, concomitant with increased maturation and/or cell surface accumulation of beta APP. In contrast, release of vesicles containing beta APP is impaired in familial Alzheimer's disease (FAD)-linked PS1 mutant cells, resulting in reduced beta APP delivery to the cell surface. Moreover, diminution of surface beta APP is profound at axonal terminals in neurons expressing a PS1 FAD variant. These results suggest that PS1 regulation of beta APP trafficking may represent an alternative mechanism by which FAD-linked PS1 variants modulate beta APP processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号