首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We introduce a general approach for investigating the role of geography in speciation, based on analyzing the geography of sister clades across all nodes in a species-level phylogeny. We examine the predictions of allopatric, sympatric, and peripatric models of speciation in several animal groups, using patterns of range overlap and range size symmetry between sister clades. A simple model of cladogenesis incorporating random movements of species' ranges is used to illustrate the effects of range changes on expected patterns. We find evidence for a predominantly allopatric mode of speciation in our study groups, with sympatry arising through postspeciational range changes. In addition, we find that relatively recent speciation events are characterized by greater asymmetry in range size between sister clades than expected under our null models, providing potential support for the peripatric model of speciation. We discuss the possible confounding effects of postspeciational range changes on our conclusions.  相似文献   

2.
Aim Phylogenetic conservatism or heritability of the geographical range sizes of species (i.e. the tendency for closely related species to share similar range sizes) has been predicted to occur because of the strong phylogenetic conservatism of niche traits. However, the extent of such heritability in range size is disputed and the role of biology in shaping this attribute remains unclear. Here, we investigate the level of heritability of geographical range sizes that is generated from neutral models assuming no biological differences between species. Methods We used three different neutral models, which differ in their speciation mode, to simulate the life‐history of 250,000 individuals in a square lattice of 50 × 50 cells. These individuals can speciate, reproduce, migrate and die in the metacommunity according to stochastic events. We ran each model for 3000 steps and recorded the range size of each species at each step. The heritability of geographical range size was assessed using an asymmetry coefficient between range sizes of sister species and using the coefficient of correlation between the range sizes of ancestors and their descendants. Results Our results demonstrated the ability of neutral models to mimic some important observed patterns in the heritability of geographical range size. Consistently, sister species exhibited higher asymmetry in range sizes than expected by chance, and correlations between the range sizes of ancestor–descendant species pairs, although often weak, were almost invariably positive. Main conclusions Our findings suggest that, even without any biological trait differences, statistically significant heritability in the geographical range sizes of species can be found. This heritability is weaker than that observed in some empirical studies, but suggests that even here a substantial component of heritability may not necessarily be associated with niche conservatism. We also conclude that both present‐day and fossil data sets may provide similar information on the heritability of the geographical range sizes of species, while the omission of rare species will tend to overestimate this heritability.  相似文献   

3.
Range size heritability refers to an intriguing pattern where closely related species occupy geographic ranges of similar extent. Its existence may indicate selection on traits emergent only at the species level, with interesting consequences for evolutionary processes. We explore whether range size heritability may be attributable to the fact that range size is largely driven by the size of geographic domains (i.e., continents, biomes, areas given by species' climatic tolerance) that tend to be similar in phylogenetically related species. Using a well-resolved phylogeny of Carnivora, we show that range sizes are indeed constrained by geographic domains and that the phylogenetic signal in range sizes diminishes if the domain sizes are accounted for. Moreover, more detailed delimitation of species' geographic domain leads to a weaker signal in range size heritability, indicating the importance of definition of the null model against which the pattern is tested. Our findings do not reject the hypothesis of range size heritability but rather unravel its underlying mechanisms. Additional analyses imply that evolutionary conservatism in niche breadth delimits the species' geographic domain, which in turn shapes the species' range size. Range size heritability patterns thus emerge as a consequence of this interplay between evolutionary and geographic constraints.  相似文献   

4.
Within taxonomic groups, most species are restricted in their geographic range sizes, with only a few being widespread. The possibility that species-level selection on range sizes contributes to the characteristic form of such species-range size distributions has previously been raised. This would require that closely related species have similar range sizes, an indication of "heritability" of range sizes at the species level. Support for this view came from a positive correlation between the range sizes of closely related pairs of fossil mollusc species. We extend this analysis by considering the relationship between the geographic range sizes of 103 pairs of contemporary avian sister species. Range sizes in these sister species show no evidence of being more similar to each other than expected by chance. A reassessment of the mollusc data also suggests that the high correlation was probably overestimated because of the skewed nature of range size data. The fact that sister species tend to have similar life histories and ecologies suggests that any relationship between range sizes and biology is likely to be complicated and will be influenced by historical factors, such as mode of speciation and postspeciation range size transformations.  相似文献   

5.
We address the conflict in earlier results regarding the relationship between dispersal potential and range size. We examine all published pelagic larval duration data for tropical reef fishes. Larval duration is a convenient surrogate for dispersal potential in marine species that are sedentary as adults and that therefore only experience significant dispersal during their larval phase. Such extensive quantitative dispersal data are only available for fishes and thus we use a unique dataset to examine the relationship between dispersal potential and range size. We find that dispersal potential and range size are positively correlated only in the largest ocean basin, the Indo-Pacific, and that this pattern is driven primarily by the spatial distribution of habitat and dispersal barriers. Furthermore, the relationship strengthens at higher taxonomic levels, suggesting an evolutionary mechanism. We document a negative correlation between species richness and larval duration at the family level in the Indo-Pacific, implying that speciation rate may be negatively related to dispersal potential. If increased speciation rate within a taxonomic group results in smaller range sizes within that group, speciation rate could regulate the association between range size and dispersal potential.  相似文献   

6.
Phylogenetic trees often depart from the expectations of stochastic models, exhibiting imbalance in diversification among lineages and slowdowns in the rate of lineage accumulation through time. Such departures have led to a widespread perception that ecological differences among species or adaptation and subsequent niche filling are required to explain patterns of diversification. However, a key element missing from models of diversification is the geographical context of speciation and extinction. In this study, we develop a spatially explicit model of geographic range evolution and cladogenesis, where speciation arises via vicariance or peripatry, and explore the effects of these processes on patterns of diversification. We compare the results with those observed in 41 reconstructed avian trees. Our model shows that nonconstant rates of speciation and extinction are emergent properties of the apportioning of geographic ranges that accompanies speciation. The dynamics of diversification exhibit wide variation, depending on the mode of speciation, tendency for range expansion, and rate of range evolution. By varying these parameters, the model is able to capture many, but not all, of the features exhibited by birth-death trees and extant bird clades. Under scenarios with relatively stable geographic ranges, strong slowdowns in diversification rates are produced, with faster rates of range dynamics leading to constant or accelerating rates of apparent diversification. A peripatric model of speciation with stable ranges also generates highly unbalanced trees typical of bird phylogenies but fails to produce realistic range size distributions among the extant species. Results most similar to those of a birth-death process are reached under a peripatric speciation scenario with highly volatile range dynamics. Taken together, our results demonstrate that considering the geographical context of speciation and extinction provides a more conservative null model of diversification and offers a very different perspective on the phylogenetic patterns expected in the absence of ecology.  相似文献   

7.
Understanding the rate at which new species form is a key question in studying the evolution of life on earth. Here we review our current understanding of speciation rates, focusing on studies based on the fossil record, phylogenies, and mathematical models. We find that speciation rates estimated from these different studies can be dramatically different: some studies find that new species form quickly and often, while others find that new species form much less frequently. We suggest that instead of being contradictory, differences in speciation rates across different scales can be reconciled by a common model. Under the "ephemeral speciation model", speciation is very common and very rapid but the new species produced almost never persist. Evolutionary studies should therefore focus on not only the formation but also the persistence of new species.  相似文献   

8.
Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species’ body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species’ body size, to untangle its role on the diversification of a Neotropical species‐rich bird clade using trait‐dependent diversification models. We show that speciation rate is a positive hump‐shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned.  相似文献   

9.
Phylogenetic conservatism or heritability of the geographic range sizes of species has been predicted to occur because of the phylogenetic conservatism of niche traits. However, evidence for range size conservatism is mixed, and even when statistically significant is often rather weak and of questionable biological importance. Here, we test the prediction that such conservatism will be more strongly expressed when the amount of spatial overlap between sister species increases. We used the global distributions of 1136 avian species (>10% of extant members of this Class), and tested the conservatism of geographic range sizes using the coefficients of correlation between values for pairs of sister species. We used a null model to test whether the range sizes of sister species were more similar to one another than expected by chance. We found that sister species showed a significant positive relationship between their geographic range sizes whatever the degree of spatial overlap. However, as predicted, the level of conservatism increases with the level of range overlap between sister species. More precisely, the strong increase in the coefficient of correlation between sister species' range sizes when we add species with some range overlap to the pool of pairs without any such overlap indicates an important threshold effect. These results suggest that niche conservatism is more likely to lead to marked heritability of the range sizes of species when similar niche traits are expressed under more similar environmental conditions. These results have significant implications because they suggest 1) that previous analyses of conservatism of range sizes have been confounded by the level of spatial overlap, and 2) that closely related species experiencing similar conditions may tend to expand or restrict their geographic ranges in parallel when faced with climate change.  相似文献   

10.
Geographic range size and evolutionary age in birds   总被引:3,自引:0,他引:3  
Together with patterns of speciation and extinction, post-speciation transformations in the range sizes of individual species determine the form of contemporary species range-size distributions. However, the methodological problems associated with tracking the dynamics of a species' range size over evolutionary time have precluded direct study of such range-size transformations, although indirect evidence has led to several models being proposed describing the form that they might take. Here, we use independently derived molecular data to estimate ages of species in six monophyletic groups of birds, and examine the relationship between species age and global geographic range size. We present strong evidence that avian range sizes are not static over evolutionary time. In addition, it seems that, with the regular exception of certain taxa (for example island endemics and some threatened species), range-size transformations are non-random in birds. In general, range sizes appear to expand relatively rapidly post speciation; subsequently; and perhaps more gradually, they then decline as species age. We discuss these results with reference to the various models of range-size dynamics that have been proposed.  相似文献   

11.
The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output of three different models to the range-size distribution of the South American avifauna. Although there were differences among the models, a moderate-to-high degree of range-size heritability consistently leads to SRDs that were similar to empirical data. These results suggest that range-size heritability can generate realistic SRDs, and may play an important role in shaping observed patterns of range sizes.  相似文献   

12.
Aspects of phylogenetic tree shape, and in particular tree balance, provide clues to the workings of the macroevolutionary process. I use a simulation approach to explore patterns in tree balance for several models of the evolutionary process under which speciation rates vary through the history of diversifying clades. I demonstrate that when speciation rates depend on an evolving trait of individuals, and are therefore “heritable” along evolutionary lineages, the resulting phylogenies become imbalanced. However, imbalance also results from some (but not all) models of “nonheritable” speciation rate variation. The degree of imbalance increases with the magnitude of speciation rate variation, and then for gradual evolution (but not punctuated equilibria) reaches an asymptote short of the theoretical maximum. Very high levels of rate variation are required to produce imbalance matching that found in real data (estimated phylogenies from the systematic literature). I discuss implications of the simulation results for our understanding of macroevolution.  相似文献   

13.
数量性状的遗传分析可以通过"选择基因型"的方式完成。本文提出了一个利用极端样本来对数量性状位点(QTL)进行关联分析的统计量T。统计量T比较上极端群体样本中具有纯合子标记的性状值差异。通过计算机模拟考察了无关联情形时T的分布和Ⅰ型错误率,结果表明,在各种样本选择策略下,T的分布近似于χ^2-分布,Ⅰ型错误率接近设定的显著性水平。同时,考察了各种遗传模型下不同遗传率,不同样本大小,及不同样本选择阈值对T的统计功效的影响,结果表明,T的功效随着标记和QTL间连锁不平衡程度的增强及遗传率和样本大小的增大而增大,当样本选择阈值更严格时,功效也越大。  相似文献   

14.
Hunt G  Roy K  Jablonski D 《The American naturalist》2005,166(1):129-35; discussion 136-43
For many current issues in macroevolution and macroecology, it is important to know to what degree the attributes of species are shared among closely related lineages, a concept sometimes referred to as species-level heritability. Recently, Webb and Gaston proposed a new method for analyzing the heritability of geographic range size and concluded that range size is not heritable in Cretaceous gastropods (data from Jablonski) and modern birds (their data). Here we show that Webb and Gaston's method is flawed in that it implicitly assumes that range sizes are uniformly distributed. When range size distributions show their characteristic strong right skew, Webb and Gaston's method spuriously tends to find that range sizes of closely related pairs of species are more dissimilar than the random expectation. A reanalysis of Jablonski's data finds range size to be robustly and strongly heritable in Cretaceous gastropods and less strongly but still significantly heritable in present-day birds.  相似文献   

15.
Aim  Recently, a flurry of studies have focused on the extent to which geographical patterns of diversity fit mid-domain effect (MDE) null models. While some studies find strong support for MDE null models, others find little. We test two hypotheses that might explain this variation among studies: small-ranged groups of species are less likely than large-ranged species to show mid-domain peaks in species richness, and mid-domain null model predictions are less robust for smaller spatial extents than for larger spatial extents.
Location  We analyse data sets from elevational, riverine, continental and other domains from around the world.
Methods  We use a combination of Spearman rank correlations and binomial tests to examine whether differences within and among studies and domains in the predictive power of MDE null models vary with spatial scale and range size.
Results  Small-ranged groups of species are less likely to fit mid-domain predictions than large-ranged groups of species. At large spatial extents, diversity patterns of taxonomic groups with large mean range sizes fit MDE null model predictions better than did diversity patterns of groups with small mean range sizes. MDE predictions were more explanatory at larger spatial extents than at smaller extents. Diversity patterns at smaller spatial extents fit MDE predictions poorly across all range sizes. Thus, MDE predictions should be expected to explain patterns of species richness when ranges and the scale of analysis are both large.
Main conclusions  Taken together, the support for these hypotheses offers a more sophisticated model of when MDE predictions should be expected to explain patterns of species richness, namely when ranges and the scale of analysis are both large. Thus the circumstances in which the MDE is important are finite and apparently predictable.  相似文献   

16.
Quantitative genetic models of sexual selection have generally failed to provide a direct connection to speciation and to explore the consequences of finite population size. The connection to speciation has been indirect because the models have treated only the evolution of male and female traits and have stopped short of modeling the evolution of sexual isolation. In this article we extend Lande's (1981) model of sexual selection to quantify predictions about the evolution of sexual isolation and speciation. Our results, based on computer simulations, support and extend Lande's claim that drift along a line of equilibria can rapidly lead to sexual isolation and speciation. Furthermore, we show that rapid speciation can occur by drift in populations of appreciable size ( Ne ≥ 1000). These results are in sharp contrast to the opinion of many researchers and textbook writers who have argued that drift does not play an important role in speciation. We argue that drift may be a powerful amplifier of speciation under a wide variety of modeling assumptions, even when selection acts directly on female mating preferences.  相似文献   

17.
Pigot AL  Owens IP  Orme CD 《PLoS biology》2012,10(2):e1001260
While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age-area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time.  相似文献   

18.
We test a near‐complete genus level phylogeny of hoverflies (Diptera: Syrphidae) for consistency with a null model of clade growth having uniform probabilities of speciation and extinction among contemporaneous species. The phylogeny is too unbalanced for this null model. Importantly, the degree of imbalance in the phylogeny depends on whether the phylogeny is analysed at the genus level or species level, suggesting that genera ought not to be used uncritically as surrogates for species in large‐scale evolutionary analyses. Tests for a range of morphological, life‐history and ecological correlates of diversity give equivocal results, but suggest that high species‐richness may be associated with sexual selection and diet breadth. We find no correlation between species‐richness and either body size or reproductive rate.  相似文献   

19.
Female mate choice has often been proposed to play an important role in cases of rapid speciation, in particular in the explosively evolved haplochromine cichlid species flocks of the Great Lakes of East Africa. Little, if anything, is known in cichlid radiations about the heritability of female mating preferences. Entirely sympatric distribution, large ecological overlap and conspicuous differences in male nuptial coloration, and female preferences for these, make the sister species Pundamilia pundamilia and P. nyererei from Lake Victoria an ideally suited species pair to test assumptions on the genetics of mating preferences made in models of sympatric speciation. Female mate choice is necessary and sufficient to maintain reproductive isolation between these species, and it is perhaps not unlikely therefore, that female mate choice has been important during speciation. A prerequisite for this, which had remained untested in African cichlid fish, is that variation in female mating preferences is heritable. We investigated mating preferences of females of these sister species and their hybrids to test this assumption of most sympatric speciation models, and to further test the assumption of some models of sympatric speciation by sexual selection that female preference is a single-gene trait. We find that the differences in female mating preferences between the sister species are heritable, possibly with quite high heritabilities, and that few but probably more than one genetic loci contribute to this behavioural speciation trait with no apparent dominance. We discuss these results in the light of speciation models and the debate about the explosive radiation of cichlid fishes in Lake Victoria.  相似文献   

20.
Geographical patterns of species diversity have been examined using mid-domain null models, in which the ranges of individual species are simulated by randomly arranging them on a bounded one- or two-dimensional continent. These models have shown that structured patterns in the geographical distribution of biodiversity can arise even under a fully stochastic procedure. In particular, mid-domain models have demonstrated that the random generation of ranges of different sizes and locations can produce a gradient of species diversity similar to the one found in real assemblages, with a peak at the middle of a continent. A less explored feature of mid-domain models is the pattern of range-size frequency distribution. Numerical simulations have provided some insights about the geographic pattern of average range size, but no exploration of the shape of range-size frequency distributions has been carried out. Here I present analytical and numerical models that generate explicit predictions for patterns of range size under the assumptions of mid-domain models of species diversity. Some generalizations include: (1) Mid-domain models predict no geographic gradient of average range size; the mean range size of species occurring at any point on a continent is constant (0.5 of the extent of the continent in the one-dimensional model, 0.25 of the area of the continent in the two-dimensional case); (2) Variance in range size is lowest at the middle of a continent and highest near the corners of a square-shaped continent; (3) The range-size frequency distribution is highly right-skewed at any point of a continent, but the skewness is highest near the corners. Despite their alleged weaknesses, mid-domain models are adequate null models against which real-world patterns can be contrasted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号