共查询到20条相似文献,搜索用时 0 毫秒
1.
Range size heritability refers to an intriguing pattern where closely related species occupy geographic ranges of similar extent. Its existence may indicate selection on traits emergent only at the species level, with interesting consequences for evolutionary processes. We explore whether range size heritability may be attributable to the fact that range size is largely driven by the size of geographic domains (i.e., continents, biomes, areas given by species' climatic tolerance) that tend to be similar in phylogenetically related species. Using a well-resolved phylogeny of Carnivora, we show that range sizes are indeed constrained by geographic domains and that the phylogenetic signal in range sizes diminishes if the domain sizes are accounted for. Moreover, more detailed delimitation of species' geographic domain leads to a weaker signal in range size heritability, indicating the importance of definition of the null model against which the pattern is tested. Our findings do not reject the hypothesis of range size heritability but rather unravel its underlying mechanisms. Additional analyses imply that evolutionary conservatism in niche breadth delimits the species' geographic domain, which in turn shapes the species' range size. Range size heritability patterns thus emerge as a consequence of this interplay between evolutionary and geographic constraints. 相似文献
2.
Phylogenetic conservatism or heritability of the geographic range sizes of species has been predicted to occur because of the phylogenetic conservatism of niche traits. However, evidence for range size conservatism is mixed, and even when statistically significant is often rather weak and of questionable biological importance. Here, we test the prediction that such conservatism will be more strongly expressed when the amount of spatial overlap between sister species increases. We used the global distributions of 1136 avian species (>10% of extant members of this Class), and tested the conservatism of geographic range sizes using the coefficients of correlation between values for pairs of sister species. We used a null model to test whether the range sizes of sister species were more similar to one another than expected by chance. We found that sister species showed a significant positive relationship between their geographic range sizes whatever the degree of spatial overlap. However, as predicted, the level of conservatism increases with the level of range overlap between sister species. More precisely, the strong increase in the coefficient of correlation between sister species' range sizes when we add species with some range overlap to the pool of pairs without any such overlap indicates an important threshold effect. These results suggest that niche conservatism is more likely to lead to marked heritability of the range sizes of species when similar niche traits are expressed under more similar environmental conditions. These results have significant implications because they suggest 1) that previous analyses of conservatism of range sizes have been confounded by the level of spatial overlap, and 2) that closely related species experiencing similar conditions may tend to expand or restrict their geographic ranges in parallel when faced with climate change. 相似文献
3.
Geographical range size heritability: what do neutral models with different modes of speciation predict? 总被引:1,自引:0,他引:1
Aim Phylogenetic conservatism or heritability of the geographical range sizes of species (i.e. the tendency for closely related species to share similar range sizes) has been predicted to occur because of the strong phylogenetic conservatism of niche traits. However, the extent of such heritability in range size is disputed and the role of biology in shaping this attribute remains unclear. Here, we investigate the level of heritability of geographical range sizes that is generated from neutral models assuming no biological differences between species. Methods We used three different neutral models, which differ in their speciation mode, to simulate the life‐history of 250,000 individuals in a square lattice of 50 × 50 cells. These individuals can speciate, reproduce, migrate and die in the metacommunity according to stochastic events. We ran each model for 3000 steps and recorded the range size of each species at each step. The heritability of geographical range size was assessed using an asymmetry coefficient between range sizes of sister species and using the coefficient of correlation between the range sizes of ancestors and their descendants. Results Our results demonstrated the ability of neutral models to mimic some important observed patterns in the heritability of geographical range size. Consistently, sister species exhibited higher asymmetry in range sizes than expected by chance, and correlations between the range sizes of ancestor–descendant species pairs, although often weak, were almost invariably positive. Main conclusions Our findings suggest that, even without any biological trait differences, statistically significant heritability in the geographical range sizes of species can be found. This heritability is weaker than that observed in some empirical studies, but suggests that even here a substantial component of heritability may not necessarily be associated with niche conservatism. We also conclude that both present‐day and fossil data sets may provide similar information on the heritability of the geographical range sizes of species, while the omission of rare species will tend to overestimate this heritability. 相似文献
4.
Pither J 《Proceedings. Biological sciences / The Royal Society》2003,270(1514):475-481
The fact that climate influences the continental-scale distributions of species is one of the central tenets of ecology and biogeography. Equally elemental is that species exhibit enormous variation in geographic range size, with most occupying comparatively small areas. The degree to which climate can account for this variation remains unclear. Here, I test three alternative climate-based hypotheses for variation in range size using a large sample of tree and shrub species native to North America north of Mexico. I show that the lowest value of January average daily minimum temperature encompassed by a species' geographic range (T(MIN)), representing the 'climate extremes hypothesis', explains almost 80% of the variation in range size. Hypotheses based on seasonality and climate optima find substantially less support. The relationship between range size and T(MIN) does not change across the breadth of latitudes examined, and is general for conifers and hardwoods, and growth form (tree versus shrub). Differential freezing resistance gains support as the mechanism underlying interspecific variation in range size: using 35 species for which data were available, both T(MIN) and range size are shown to be strongly correlated with measures of freezing resistance. 相似文献
5.
J. C. Nabout L. C. Terribile L. M. Bini J. A. F. Diniz‐Filho 《Journal of Zoological Systematics and Evolutionary Research》2010,48(2):102-108
The aim of this study was to evaluate the levels of phylogenetic heritability of the geographical range size, shape and position for 88 species of fiddler crabs of the world, using phylogenetic comparative methods and simulation procedures to evaluate their fit to the neutral model of Brownian motion. The geographical range maps were compiled from literature, and range size was based on the entire length of coastline occupied by each species, and the position of each range was calculated as its latitudinal and longitudinal midpoint. The range shape of each species was based in fractal dimension (box‐counting technique). The evolutionary patterns in the geographical range metrics were explored by phylogenetic correlograms using Moran’s I autocorrelation coefficients, autoregressive method (ARM) and phylogenetic eigenvector regression (PVR). The correlograms were compared with those obtained by simulations of Brownian motion processes across phylogenies. The distribution of geographical range size of fiddler crabs is right‐skewed and weak phylogenetic autocorrelation was observed. On the other hand, there was a strong phylogenetic pattern in the position of the range (mainly along longitudinal axis). Indeed, the ARM and PVR evidenced, respectively, that ca. 86% and 91% of the longitudinal midpoint could be explained by phylogenetic relationships among the species. The strong longitudinal phylogenetic pattern may be due to vicariant allopatric speciation and geographically structured cladogenesis in the group. The traits analysed (geographical range size and position) did not follow a Brownian motion process, thus suggesting that both adaptive ecological and evolutionary processes must be invoked to explain their dynamics, not following a simple neutral inheritance in the fiddler‐crab evolution. 相似文献
6.
Macroecological studies often find that species with large geographic range sizes are also locally abundant. Superior colonization ability of species with large ranges is a possible/plausible explanation for this pattern, yet direct measures of colonization ability are difficult, and thus the relationship between colonization ability and range size is rarely investigated directly. Using a data set of gravestone lichens spanning more than 300 years, we investigated relationships among colonization ability, abundance, and geographic range size. Pairwise correlations were used to compare colonization ability and local abundance with area of occupancy (a measure of range size) and spore size within England, Scotland, and Wales on two different types of gravestones. Indices of colonization ability and abundance were positively correlated with area of occupancy. Colonization ability was significantly positively correlated with local abundance, but it was not at all related to propagule size. When lichen species were grouped categorically by colonization ability, the strongest area-occupancy relationships were observed within the subset of species that were the best colonizers. Significant differences among genera were found in spore size but not for other variables. Lichen species that occupy the largest geographic area were the best colonizers: they were the first species present on newly erected stones. These results complement the more commonly observed macroecological pattern that widespread species are also locally abundant. 相似文献
7.
Geographic characters--traits describing the spatial distribution of a species-may both affect and be affected by processes associated with lineage birth and death. This is potentially confounding to comparative analyses of species distributions because current models do not allow reciprocal interactions between the evolution of ranges and the growth of phylogenetic trees. Here, we introduce a likelihood-based approach to estimating region-dependent rates of speciation, extinction, and range evolution from a phylogeny, using a new model in which these processes are interdependent. We demonstrate the method with simulation tests that accurately recover parameters relating to the mode of speciation and source-sink dynamics. We then apply it to the evolution of habitat occupancy in Californian plant communities, where we find higher rates of speciation in chaparral than in forests and evidence for expanding habitat tolerances. 相似文献
8.
Understanding patterns of species richness at broad geographic extents remains one of the most challenging yet necessary scientific goals of our time. Many hypotheses have been proposed to account for spatial variation in species richness; among them, environmental determinants have played a central role. In this study, we use data on regional bat species richness in the New World to study redundancy and complementarity of three environmental hypotheses: energy, heterogeneity and seasonality. We accomplish this by partitioning variation in species richness among components associated with unique and combined effects of variables from each hypotheses, and by partitioning the overall richness gradient into gradients of species with varying breadths of geographic distribution. These three environmental hypotheses explain most variation in the species richness gradient of all bats, but do not account for all positive spatial autocorrelation at short distances. Although environmental predictors are highly redundant, energy and seasonality explain different and complementary fractions of variation in species richness of all bats. On the other hand, heterogeneity variables contribute little to explain this gradient. However, results change dramatically when richness is estimated for groups of species with different sizes of geographic distribution. First, the amount of variation explained by environment decreases with a decrease in range size; this suggests that richness gradients of small‐ranged species can not be explained as easily as those of broadly distributed species, as has been implied by analyses that do not consider differences in range size among species. Second, the relative contribution of environmental predictors to explained variation also changes with change in range size. Seasonality and energy are good predictors of species with broad distributions, but they loose almost all explanatory power for richness of species with small ranges. In contrast, heterogeneity, which is a relatively poor predictor of richness of species with large ranges, becomes the main predictor of richness gradients of species with restricted distributions. This suggests that range size is a different dimension on which heterogeneity and other environmental characteristics are complementary to each other. Our results suggest that determinants of species richness gradients might be complex, or at least more complex than many studies have previously suggested. 相似文献
9.
The significance of geographic range size for spatial diversity patterns in Neotropical palms 总被引:5,自引:0,他引:5
We examined the effect of range size in commonly applied macroecological analyses using continental distribution data for all 550 Neotropical palm species (Arecaceae) at varying grain sizes from 0.5° to 5°. First, we evaluated the relative contribution of range-restricted and widespread species on the patterns of species richness and endemism. Second, we analysed the impact of range size on the predictive value of commonly used predictor variables. Species sequences were produced arranging species according to their range size in ascending, descending, and random order. Correlations between the cumulative species richness patterns of these sequences and environmental predictors were performed in order to analyse the effect of range size. Despite the high proportion of rare species, patterns of species richness were found to be dominated by a minority of widespread species (∼20%) which contained 80% of the spatial information. Climatic factors related to energy and water availability and productivity accounted for much of the spatial variation of species richness of widespread species. In contrast, species richness of range-restricted species was to a larger extent determined by topographical complexity. However, this effect was much more difficult to detect due to a dominant influence of widespread species. Although the strength of different environmental predictors changed with spatial scale, the general patterns and trends proved to be relatively stabile at the examined grain sizes. Our results highlight the difficulties to approximate causal explanations for the occurrence of a majority of species and to distinguish between contemporary climatic factors and history. 相似文献
10.
Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow. 相似文献
11.
D. B. O'Leary †‡§ J. Coughlan ‡ E. Dillane T. V. McCarthy † T. F. Cross 《Journal of fish biology》2007,70(SC):310-335
Previous genetic studies using neutral markers such as allozymes, mtDNA and minisatellite loci have demonstrated varying amounts of population structure in cod Gadus morhua throughout the Atlantic. Microsatellite loci, which are potentially the most informative of presently available neutral genetic markers, have been applied extensively within western and eastern Atlantic areas but not on a range-wide basis. In the present study, six microsatellite DNA loci were used to screen cod samples from nine locations throughout the geographic range from the Scotian Shelf in the West Atlantic to the Barents and Baltic Seas in the east. Overall F ST value was 0·03 ( P = < 0·001) across all samples. Statistically significant population differences over all loci combined were evident between more geographically distant samples, using either heterogeneity tests or F ST analysis, with at least one locus showing significant differences between all samples (prior to Bonferroni correction). A significant correlation was observed between genetic and geographical distance, suggesting a higher level of historical and contemporary gene flow between adjacent populations than more distant populations. Samples from either end of the geographic range (Scotian Shelf and Baltic Sea) were particularly distinct when analysed using the STRUCTURE programme and also showed a high level of self-assignment when individuals of either the Scotian Shelf or Baltic Sea were tested against the entire data set. The present microsatellite study demonstrates a high level of geographic population structure between the western Atlantic, middle and eastern Atlantic and Baltic Sea, and thus, the findings should be useful in devising overall management and conservation strategies for the species. 相似文献
12.
Interspecific patterns of species richness, geographic range size, and body size among New World venomous snakes 总被引:4,自引:0,他引:4
Robert N. Reed 《Ecography》2003,26(1):107-117
Many higher taxa exhibit latitudinal gradients in species richness, geographic range size, and body size. However, these variables are often interdependent, such that examinations of univariate or bivariate patterns alone may be misleading. Therefore, I examined latitudinal gradients in, and relationships between, species richness, geographic range size, and body size among 144 species of New World venomous snakes [families Elapidae (coral snakes) and Viperidae (pitvipers)]. Both lineages are monophyletic, collectively span 99° of latitude, and are extremely variable in body size and geographic range sizes. Coral snakes exhibit highest species richness near the equator, while pitviper species richness peaks in Central America. Species – range size distributions were strongly right-skewed for both families. There was little support for Bergmann's rule or Rapoport's rule for snakes of either family, as neither body size nor range size increased significantly with latitude. However, range area and median range latitude were positively correlated above 15° N, indicating a possible "Rapoport effect" at high northern latitudes. Geographic range size was positively associated with body size. Available continental area strongly influenced range size. Comparative (phylogenetically-based) analyses revealed that shared history is a poor predictor of range size variation within clades. Among vipers, trends in geographic range sizes may have been structured more by historical biogeography than by macroecological biotic factors. 相似文献
13.
Peter H. Schönemann 《Genetica》1997,99(2-3):97-108
One reason for the astonishing persistence of the IQ myth in the face of overwhelming prior and posterior odds against it may be the unbroken chain of excessive heritability claims for ‘intelligence’, which IQ tests are supposed to ‘measure’. However, if, as some critics insist, ‘intelligence’ is undefined, and Spearman's g is beset with numerous problems, not the least of which is universal rejection of Spearman's model by the data, then how can the heritability of ‘intelligence’ exceed that of milk production of cows and egg production of hens? The thesis of the present review paper is that the answer to this riddle has two parts: (a) the technical basis of heritability claims for human behavior is just as shaky as that of Spearman's g. For example, a once widely used ‘heritability estimate’ turns out to be mathematically invalid, while another such estimate, though mathematically valid, never fits any data; and (b) valid technical criticisms of flawed heritability claims typically are met with stubborn editorial resistance in the main stream journals, which tends to calcify such misinformation. 相似文献
14.
Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis 总被引:2,自引:0,他引:2
In historical biogeography, model-based inference methods for reconstructing the evolution of geographic ranges on phylogenetic trees are poorly developed relative to the diversity of analogous methods available for inferring character evolution. We attempt to rectify this deficiency by constructing a dispersal-extinction-cladogenesis (DEC) model for geographic range evolution that specifies instantaneous transition rates between discrete states (ranges) along phylogenetic branches and apply it to estimating likelihoods of ancestral states (range inheritance scenarios) at cladogenesis events. Unlike an earlier version of this approach, the present model allows for an analytical solution to probabilities of range transitions as a function of time, enabling free parameters in the model, rates of dispersal, and local extinction to be estimated by maximum likelihood. Simulation results indicate that accurate parameter estimates may be difficult to obtain in practice but also show that ancestral range inheritance scenarios nevertheless can be correctly recovered with high success if rates of range evolution are low relative to the rate of cladogenesis. We apply the DEC model to a previously published, exemplary case study of island biogeography involving Hawaiian endemic angiosperms in Psychotria (Rubiaceae), showing how the DEC model can be iteratively refined from inspecting inferences of range evolution and also how geological constraints involving times of island origin may be imposed on the likelihood function. The DEC model is sufficiently similar to character models that it might serve as a gateway through which many existing comparative methods for characters could be imported into the realm of historical biogeography; moreover, it might also inspire the conceptual expansion of character models toward inclusion of evolutionary change as directly coincident, either as cause or consequence, with cladogenesis events. The DEC model is thus an incremental advance that highlights considerable potential in the nascent field of model-based historical biogeographic inference. 相似文献
15.
16.
17.
Individuals colonizing unoccupied habitats typically possess characters associated with increased dispersal and, in insects, colonization success has been related to flight morphology. The speckled wood butterfly, Pararge aegeria, has undergone recent major expansions in its distribution: in the north of its range, P. aegeria has colonized many areas in north and east England, and in the south, it was first recorded on Madeira in 1976. We examined morphological traits associated with flight and reproduction in the northern subspecies tircis, and in the southern subspecies aegeria, from sites colonized about 20 years ago in northern England and on Madeira, respectively. Investment in flight was measured as relative wing area and thorax mass, and investment in reproduction as relative abdomen mass. All measurements were from individuals reared in a common environment and there were significant family effects in most of the variables measured. Compared with individuals from sites continuously occupied in recent history, colonizing individuals were larger (adult live mass). In the subspecies tircis, colonizing individuals also had relatively larger thoraxes and lower wing aspect ratios indicating that evolutionary changes in flight morphology may be related to colonization. However, sex by site interactions in analyses of thorax mass and abdomen mass suggest different selection pressures on flight morphology between the sexes in relation to colonization. Overall, the subspecies aegeria was smaller (adult live mass) and had a relatively larger thorax and wings, and smaller abdomen than subspecies tircis. Evolutionary changes in flight morphology and dispersal rate may be important determinants of range expansion, and may affect responses to future climate change. Received: 1 March 1999 / Accepted: 30 June 1999 相似文献
18.
Genetic variation for six loci in 37 populations of Muscari comosum L. (Liliaeeae) is surveyed. One locus is monomorphic and identical in all the populations. The remaining loci are polymorphic. Although the GOT-1 and GOT-3 loci show a pronounced heterozygote deficit explained by selection acting upon these loci (or on genes linked to them), the remaining loci nearly conform to Hardy-Weinberg proportions. The overall pattern shows a low level of heterozygote deficit (FIS=0.08) explained by the mixed mating system. The organization of genetic variation shows a low level of interpopulation differentiation (FST or GST=0.04). At the same time, autocorrelation analysis shows no pattern of geographical variation. It is concluded that gene flow and selection interact to produce the overall pattern of genetic variation. 相似文献
19.
Using demes from experimental metapopulations of the flour beetle, Tribolium castaneum, we investigated phase 3 of Wright's shifting balance process. Using parent demes of high, intermediate, and low mean fitness, we experimentally modeled migration of varying amounts from demes of high mean fitness into demes of lower mean fitness (like phase 3) as well as the reciprocal (the opposite of phase 3). In natural populations, some migration among demes occurs independently of deme fitness. In this case, demes of high mean fitness are likely to receive migrants from demes of lower mean fitness; these effects might limit the effectiveness of phase 3 but have not been studied experimentally. We estimated the populational heritability of mean fitness by the regression of offspring deme means on the weighted parental means and found moderate levels of demic heritability one (0.641-0.690) and two (0.518-0.552) generations after migration. We discuss our findings in relation to the role of interdemic migration in "adaptive peak shifts" in metapopulations and the controversies over group selection and the units of inheritance. 相似文献
20.
The "oscillation hypothesis" has been proposed as a general explanation for the exceptional diversification of herbivorous insect species. The hypothesis states that speciation rates are elevated through repeated correlated changes--oscillations--in degree of host plant specificity and geographic range. The aim of this study is to test one of the predictions from the oscillation hypothesis: a positive correlation between diet breadth (number of host plants used) and geographic range size, using the globally distributed butterfly subfamily Nymphalinae. Data on diet breadth and global geographic range were collected for 182 Nymphalinae butterflies species and the size of the geographic range was measured using a GIS. We tested both diet breadth and geographic range size for phylogenetic signal to see if species are independent of each other with respect to these characters. As this test gave inconclusive results, data was analysed both using cross-species comparisons and taking phylogeny into account using generalised estimating equations as applied in the APE package in R. Irrespective of which method was used, we found a significant positive correlation between diet breadth and geographic range size. These results are consistent for two different measures of diet breadth and removal of outliers. We conclude that the global range sizes of Nymphalinae butterflies are correlated to diet breadth. That is, butterflies that feed on a large number of host plants tend to have larger geographic ranges than do butterflies that feed on fewer plants. These results lend support for an important step in the oscillation hypothesis of plant-driven diversification, in that it can provide the necessary fuel for future population fragmentation and speciation. 相似文献