首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macroevolutionary patterns, often inferred from metrics of community relatedness, are often used to ascertain major evolutionary processes shaping communities. These patterns have been shown to be informative of biogeographic barriers, of habitat suitability and invasibility (especially with regard to environmental filtering), and of regions that function as evolutionary cradles (i.e., sources of diversification) or museums (i.e., regions of reduced extinction). Here, we analyzed continental datasets of mammal and bird distributions to identify primary drivers of community evolution on the African continent for mostly endothermic vertebrates. We find that underdispersion (i.e., relatively low phylogenetic diversity compared to species richness) closely correlates with specific ecoregions that have been identified as climatic refugia in the literature, regardless of whether these specific regions have been touted as cradles or museums. Using theoretical models of identical communities that differ only with respect to extinction rates, we find that even small suppressions of extinction rates can result in underdispersed communities, supporting the hypothesis that climatic stability can lead to underdispersion. We posit that large‐scale patterns of under‐ and overdispersion between regions of similar species richness are more reflective of a particular region’s extinction potential, and that the very nature of refugia can lead to underdispersion via the steady accumulation of species richness through diversification within the same ecoregion during climatic cycles. Thus, patterns of environmental filtering can be obfuscated by environments that coincide with biogeographic refugia, and considerations of regional biogeographic history are paramount for inferring macroevolutionary processes.  相似文献   

2.
Abstract How to maximize the conservation of biodiversity is critical for conservation planning, particularly given rapid habitat loss and global climatic change. The importance of preserving phylogenetic diversity has gained recognition due to its ability to identify some influences of evolutionary history on contemporary patterns of species assemblages that traditional taxonomic richness measures cannot identify. In this study, we evaluate the relationship between taxonomic richness and phylogenetic diversity of angiosperms at genus and species levels and explore the spatial pattern of the residuals of this relationship. We then incorporate data on historical biogeography to understand the process that shaped contemporary floristic assemblages in a global biodiversity hotspot, Yunnan Province, located in southwestern China. We identified a strong correlation between phylogenetic diversity residuals and the biogeographic affinity of the lineages in the extant Yunnan angiosperm flora. Phylogenetic diversity is well correlated with taxonomic richness at both genus and species levels between floras in Yunnan, where two diversity centers of phylogenetic diversity were identified (the northwestern center and the southern center). The northwestern center, with lower phylogenetic diversity than expected based on taxonomic richness, is rich in temperate‐affinity lineages and signifies an area of rapid speciation. The southern center, with higher phylogenetic diversity than predicted by taxonomic richness, contains a higher proportion of lineages with tropical affinity and seems to have experienced high immigration rates. Our results highlight that maximizing phylogenetic diversity with historical interpretation can provide valuable insights into the floristic assemblage of a region and better‐informed decisions can be made to ensure different stages of a region's evolutionary history are preserved.  相似文献   

3.
Aim The relative importance of current climate and past historical legacies is hotly debated. Here, we assess their role in determining the global distribution and diversity patterns of palms (Arecaceae), a widespread, species‐rich group of keystone ecological importance in tropical ecosystems. Location Global. Methods We assembled country‐level species lists world‐wide and compiled associated data on potential contemporary environmental drivers (current climate, habitat heterogeneity, area, and insularity), Quaternary glacial–interglacial climate change and major biogeographic regions to evaluate to what extent the global distribution and species richness patterns in palms reflect Quaternary climatic oscillations or regional effects reflecting pre‐Quaternary legacies. We also assessed for the first time if historical legacies differ between continents and islands, providing novel insights into determinants of insular species richness. Results Palm species richness was significantly affected by Quaternary climate changes and further differed between biogeographic regions even when both current environmental conditions and Quaternary climate changes were accounted for. In contrast, global limits to the distribution of the palm family were best explained by current temperature while biogeographic regional differences were unimportant and Quaternary climate change caused only a small constraint. Historical legacies were weak on islands, with only a small regional effect and no effect of Quaternary climate changes. Main conclusions Strong historical legacies supplement current environment as determinants of palm species richness. These primarily comprise pre‐Quaternary historical effects, reflected in low African species richness (possibly linked to pre‐Quaternary extinctions) and outstandingly high Neotropical and Indomalayan palm species richness (possibly linked to these regions' long‐term climatic suitability for palms). In contrast to species richness, the global distribution of the family range is largely in equilibrium with current climate. The small historical effects on islands are consistent with climatic buffering from their oceanic environment.  相似文献   

4.
What determines large-scale patterns of species richness remains one of the most controversial issues in ecology. Using the distribution maps of 11 405 woody species in China, we compared the effects of habitat heterogeneity, human activities and different aspects of climate, particularly environmental energy, water-energy dynamics and winter frost, and explored how biogeographic affinities (tropical versus temperate) influence richness-climate relationships. We found that the species richness of trees, shrubs, lianas and all woody plants strongly correlated with each other, and more strongly correlated with the species richness of tropical affinity than with that of temperate affinity. The mean temperature of the coldest quarter was the strongest predictor of species richness, and its explanatory power for species richness was significantly higher for tropical affinity than for temperate affinity. These results suggest that the patterns of woody species richness mainly result from the increasing intensity of frost filtering for tropical species from the equator/lowlands towards the poles/highlands, and hence support the freezing-tolerance hypothesis. A model based on these results was developed, which explained 76-85% of species richness variation in China, and reasonably predicted the species richness of woody plants in North America and the Northern Hemisphere.  相似文献   

5.
Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning.  相似文献   

6.
Understanding regional variability in species richness is necessary for conservation efforts to succeed in the face of large-scale environmental deterioration. Several analyses of North American vertebrates have shown that climatic energy provides the best explanation of contemporary species richness patterns. The paucity of analyses of insect diversity patterns, however, remains a serious obstacle to a general hypothesis of spatial variation in diversity. We collected species distribution data on a North American beetle genus, Epicauta (Coleoptera: Meloidae) and tested several major diversity hypotheses. These beetles are generally grasshopper egg predators as larvae, and angiosperm herbivores as adults. Epicauta richness is highest in the hot, dry American southwest, and decreases north and east, consistent with the species richness-energy hypothesis. Potential evapotranspiration, which is also the best predictor of richness patterns among North American vertebrates, explains 80.2% of the variability in Epicauta species richness. Net primary productivity and variables measuring climatic heat energy only (such as PET) are not generally comparable, though they are sometimes treated as if they were equivalent. We conclude that the species richness-energy hypothesis currently provides a better overall explanation for Epicauta species richness patterns in North America than other major diversity hypotheses. The observed relationship between climatic energy and regional species richness may provide significant insight into the response of ecological communities to climate change.  相似文献   

7.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

8.
Aim Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location Global; equal‐area grid cells of approximately 10,000 km2. Methods We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index and the total taxonomic distinctness (TTD) index, because we found that the variance of the other two indices we examined (average taxonomic distinctness and mean root distance) strongly depended on species richness. We then identified regions with unusually high or low phylogenetic diversity given the underlying level of species richness by using the residuals from the global relationship of species richness and phylogenetic diversity. Results Phylogenetic diversity as measured by either Faith’s PD or TTD was strongly correlated with species richness globally, while the other two indices showed very different patterns. When either Faith’s PD or TTD was tested against species richness, residuals were strongly spatially structured. Areas with unusually low phylogenetic diversity for their associated species richness were mostly on islands, indicating large radiations of few lineages that have successfully colonized these archipelagos. Areas with unusually high phylogenetic diversity were located around biogeographic contact zones in Central America and southern China, and seem to have experienced high immigration or in situ diversification rates, combined with local persistence of old lineages. Main conclusions We show spatial structure in the residuals of the relationship between species richness and phylogenetic diversity, which together with the positive relationship itself indicates strong signatures of evolutionary history on contemporary global patterns of amphibian species richness. Areas with unusually low and high phylogenetic diversity for their associated richness demonstrate the importance of biogeographic barriers to dispersal, colonization and diversification processes.  相似文献   

9.
Aim To evaluate the strength of evidence for hypotheses explaining the relationship between climate and species richness in forest plots. We focused on the effect of energy availability which has been hypothesized to influence species richness: (1) via the effect of productivity on the total number of individuals (the more individuals hypothesis, MIH); (2) through the effect of temperature on metabolic rate (metabolic theory of biodiversity, MTB); or (3) by imposing climatic limits on species distributions. Location Global. Methods We utilized a unique ‘Gentry‐style’ 370 forest plots data set comprising tree counts and individual stem measurements, covering tropical and temperate forests across all six forested continents. We analysed variation in plot species richness and species richness controlled for the number of individuals by using rarefaction. Ordinary least squares (OLS) regression and spatial regressions were used to explore the relative performance of different sets of environmental variables. Results Species richness patterns do not differ whether we use raw number of species or number of species controlled for number of individuals, indicating that number of individuals is not the proximate driver of species richness. Productivity‐related variables (actual evapotranspiration, net primary productivity, normalized difference vegetation index) perform relatively poorly as correlates of tree species richness. The best predictors of species richness consistently include the minimum temperature and precipitation values together with the annual means of these variables. Main conclusion Across the world's forests there is no evidence to support the MIH, and a very limited evidence for a prominent role of productivity as a driver of species richness patterns. The role of temperature is much more important, although this effect is more complex than originally assumed by the MTB. Variation in forest plot diversity appears to be mostly affected by variation in the minimum climatic values. This is consistent with the ‘climatic tolerance hypothesis’ that climatic extremes have acted as a strong constraint on species distribution and diversity.  相似文献   

10.
Questions: What is the climatic envelope of European Atlantic heathlands and the relationship between their floristic geographical variability and climatic parameters? Are the biogeographic patterns extracted from genuine heath plants comparable to those extracted from the accompanying flora? To what extent does the species composition extracted from phytosociological data support the current theory of refuge areas of heath vegetation in southern Atlantic Europe during the Pleistocene ice ages? Location: Atlantic Europe and NW Morocco. Methods: The geographical territory in which Atlantic heathlands occur was divided into 23 sectors following geographic and chorological criteria. A presence–absence table with 333 taxa was then constructed with the available phytosociological data. The taxa were classified into different groups according to their phytosociological affinity. Several types of numerical analysis were performed with this matrix and the climatic data obtained from meteorological sources. Results: Heathlands require a humid and oceanic climate and are limited by cold temperatures in the north and by summer droughts in the south. The highest floristic richness of this vegetation type is found in NW Iberia. Ordinations indicate a strong correlation between floristic composition of biogeographic sector and summer drought (Ios) and thermicity (It). Conclusions: The main climatic factors determining lowland heathland floristic distribution are thermicity and summer drought. The current optimal conditions for heath flora in NW Iberia suggest that there were southern refuges during the Pleistocene ice ages from which northward expansion has taken place.  相似文献   

11.
Climate has played a key role in shaping the geographic patterns of biodiversity. The imprint of Quaternary climatic fluctuations is particularly evident on the geographic distribution of Holarctic faunas, which dramatically shifted their ranges following the alternation of glacial-interglacial cycles during the Pleistocene. Here, we evaluate the existence of differences between climatically stable and unstable regions – defined on the basis of climatic change velocity since the Last Glacial Maximum – in the geographic distribution of several biological attributes of extant terrestrial mammals of the Nearctic and Western Palearctic regions. Specifically, we use a macroecological approach to assess the dissimilarities in species richness, range size, body size, longevity and litter size of species that inhabit regions with contrasting histories of climatic stability. While several studies have documented how the distributional ranges of animals can be affected by long-term historic climatic fluctuations, there is less evidence on the species-specific traits that determine their responsiveness under such climatic instability. We find that climatically unstable areas have more widespread species and lower mammal richness than stable regions in both continents. We detected stronger signatures of historical climatic instability on the geographic distribution of body size in the Nearctic region, possibly reflecting lagged responses to recolonize deglaciated regions. However, the way that animals respond to climatic fluctuations varies widely among species and we were unable to find a relationship between climatic instability and other mammal life-history traits (longevity and litter size) in any of the two biogeographic regions. We, therefore, conclude that beyond some biological traits typical of macroecological analyses such as geographic range size and body size, it is difficult to infer the responsiveness of species distributions to climate change solely based on particular life-history traits.  相似文献   

12.
Weak links: 'Rapoport's rule' and large-scale species richness patterns   总被引:4,自引:0,他引:4  
Many hypotheses have been proposed to explain regional species richness patterns. Among these, ‘Rapoport's rule’ has sparked considerable controversy by stating that the latitudinal gradient in species richness can be explained indirectly as a function of narrower geographic ranges for species at low latitudes. Annual climatic variability, or deviation from mean climatic conditions, has been hypothesized to moderate this phenomenon. Furthermore, taxa that avoid much of this seasonality, such as temperate zone insects that enter diapause or species that migrate, were predicted to show reduced latitudinal gradients in richness. I test the suggested link between ‘Rapoport's rule’ and species richness for two higher level insect taxa as well as for the class Mammalia. Although these taxa exhibit the well-known latitudinal gradient in species richness, simple annual climatic variability and deviation from mean annual climatic conditions provide very poor predictions of species richness in each of them. Potential evapotranspiration, a measurement of ambient climatic energy, explains most of the observed variance in regional species richness patterns for all three taxa, consistent with the species richness-energy hypothesis. I find no support for an indirect link between ‘Rapoport's rule’ and terrestrial species richness patterns in North America.  相似文献   

13.
Hong Qian 《Ecography》2009,32(3):553-560
Determining the effects of regional and contemporary factors on large-scale patterns in species richness has been a fundamental question in modern ecology and biogeography. However, few studies have examined effects of historical and regional factors on species richness at the global scale, and conclusions are often inconsistent or controversial. Here, I use a comprehensive dataset to examine regional effects on species richness of vascular plants and four taxa of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) in the same set of sample units (ecoregions) in seven biogeographic realms across the globe. The same spatial scale and the same set of environmental variables, which are thought to influence large-scale patterns in species richness of vascular plants and terrestrial vertebrates, are used for all the five taxa. Species richness of each taxon is compared across biogeographic realms. Regional effect on species richness has been found for all the five taxa. Of the 90 realm-pair comparisons for the five taxa between observed richness of a region and the richness of the region predicted by the richness–environment relationship derived from the data of another region, 74 (82.2%) showed significant differences between observed and predicted species richness, indicating that a species richness–environment relationship developed for one region cannot accurately predict species richness in other regions of similar environments.  相似文献   

14.
Spatial patterns of species richness follow climatic and environmental variation, but could reflect random dynamics of species ranges (the mid-domain effect, MDE). Using data on the global distribution of birds, we compared predictions based on energy availability (actual evapotranspiration, AET, the best single correlate of avian richness) with those of range dynamics models. MDE operating within the global terrestrial area provides a poor prediction of richness variation, but if it operates separately within traditional biogeographic realms, it explains more global variation in richness than AET. The best predictions, however, are given by a model of global range dynamics modulated by AET, such that the probability of a range spreading into an area is proportional to its AET. This model also accurately predicts the latitudinal variation in species richness and variation of species richness both within and between realms, thus representing a compelling mechanism for the major trends in global biodiversity.  相似文献   

15.
Strong correlations between species diversity and climate have been widely observed, but the mechanism underlying this relationship is unclear. Here, we explored the causes of the richness–climate relationships among passerine birds in China by integrating tropical conservatism and diversification rate hypotheses using path models. We found that assemblages with higher species richness southwest of the Salween–Mekong–Pearl River Divide are phylogenetically overdispersed and have shorter mean root distances (MRDs), while species-rich regions northeast of this divide (e.g., north Hengduan Mountains–south Qinling Mountains) are phylogenetically clustered and have longer MRDs. The results of the path analyses showed that the direct effect of climatic factors on species richness was stronger than their indirect effects on species richness via phylogenetic relatedness, indicating that neither tropical conservatism nor diversification rate hypotheses can well explain the richness–climate relationship among passerines in China. However, when path analyses were conducted within subregions separately, we found that the tropical conservatism hypothesis was well supported in the southwestern Salween–Mekong–Pearl River Divide, while the diversification rate hypothesis could explain the richness–climate relationship well in the northeastern divide. We conclude that the diversity patterns of passerines in different subregions of the Eastern Himalayas-Mountains of Southwest China may be shaped by different evolutionary processes related to geological and climatic histories, which explains why the tropical conservatism or diversification rate hypothesis alone cannot fully explain the richness–climate relationships.  相似文献   

16.
Theory predicts that biogeographic factors should play a central role in promoting population divergence and speciation. Previous empirical studies into biogeography and diversification have been relatively restricted in terms of the geographical area, phylogenetic scope, and the range of biogeographic factors considered. Here we present a global analysis of allopatric phenotypic divergence (measured as subspecies richness) across more than 9600 bird species. The main aim of this study was to examine the extent to which biogeographical factors can explain patterns of phenotypic divergence. Analysis of the taxonomic distribution of subspecies among species suggests that subspecies formation and extinction have occurred at a considerably faster rate than has species formation. However, the observed distribution departs from the expectation under a random birth-death model of diversification. Across 19 phylogenetic trees, we find no significant linear relationship between species age and subspecies richness, implying that species age is a poor predictor of subspecies richness. Both subspecies richness and subspecies diversification rate are found to exhibit low phylogenetic signal, meaning that closely related species do not tend to possess similar numbers of subspecies. As predicted by theory, high subspecies richness was associated with large breeding range size, island dwelling, inhabitation of montane regions, habitat heterogeneity, and low latitude. Of these factors, breeding range size was the variable that explained the most variation. Unravelling whether species that have invaded previously glacial areas have more or fewer subspecies than expected proves to be complicated due to a covariation between the postglacial colonization, latitude, geographic range size, and subspecies richness. However, the effect of postglacial colonization on subspecies richness appears to be small. Mapping the distribution of species' subspecies richness globally reveals geographical patterns that correspond to many of the predictions of the statistical models, but may also reflect geographical variation in taxonomic practice. Overall, we demonstrate that biogeographic models can explain about 30% of the global variation in subspecies richness in birds.  相似文献   

17.
Why are there more species in the tropics than in temperate regions? In recent years, this long-standing question has been addressed primarily by seeking environmental correlates of diversity. But to understand the ultimate causes of diversity patterns, we must also examine the evolutionary and biogeographic processes that directly change species numbers (i.e., speciation, extinction, and dispersal). With this perspective, we dissect the latitudinal diversity gradient in hylid frogs. We reconstruct a phylogeny for 124 hylid species, estimate divergence times and diversification rates for major clades, reconstruct biogeographic changes, and use ecological niche modeling to identify climatic variables that potentially limit dispersal. We find that hylids originated in tropical South America and spread to temperate regions only recently (leaving limited time for speciation). There is a strong relationship between the species richness of each region and when that region was colonized but not between the latitudinal positions of clades and their rates of diversification. Temperature seasonality seemingly limits dispersal of many tropical clades into temperate regions and shows significant phylogenetic conservatism. Overall, our study illustrates how two general principles (niche conservatism and the time-for-speciation effect) may help explain the latitudinal diversity gradient as well as many other diversity patterns across taxa and regions.  相似文献   

18.
19.
Aim To integrate dietary knowledge and species distributions in order to examine the latitudinal, environmental, and biogeographical variation in the species richness of avian dietary guilds (herbivores, granivores, frugivores, nectarivores, aerial insectivores, terrestrial/arboreal insectivores, carnivores, scavengers, and omnivores). Location Global. Methods We used global breeding range maps and a comprehensive dietary database of all terrestrial bird species to calculate guild species richness for grid cells at 110 × 110 km resolution. We assessed congruence of guild species richness, quantified the steepness of latitudinal gradients and examined the covariation between species richness and climate, topography, habitat diversity and biogeographic history. We evaluated the potential of current environment and biogeographic history to explain global guild distribution and compare observed richness–environment relationships with those derived from random subsets of the global species pool. Results While most guilds (except herbivores and scavengers) showed strong congruence with overall bird richness, covariation in richness between guilds varied markedly. Guilds exhibited different peaks in species richness in geographical and multivariate environmental space, and observed richness–environment relationships mostly differed from random expectations. Latitudinal gradients in species richness were steepest for terrestrial/arboreal insectivores, intermediate for frugivores, granivores and carnivores, and shallower for all other guilds. Actual evapotranspiration emerged as the strongest climatic predictor for frugivores and insectivores, seasonality for nectarivores, and temperature for herbivores and scavengers (with opposite direction of temperature effect). Differences in species richness between biogeographic regions were strongest for frugivores and nectarivores and were evident for nectarivores, omnivores and scavengers when present‐day environment was statistically controlled for. Guild richness–environment relationships also varied between regions. Main conclusions Global associations of bird species richness with environmental and biogeographic variables show pronounced differences between guilds. Geographic patterns of bird diversity might thus result from several processes including evolutionary innovations in dietary preferences and environmental constraints on the distribution and diversification of food resources.  相似文献   

20.
Endemic species and species with small ranges are ecologically and evolutionarily distinct and are vulnerable to extinction. Determining which abiotic and biotic factors structure patterns of endemism on continents can advance our understanding of global biogeographic processes, but spatial patterns of mammalian endemism have not yet been effectively predicted and reconstructed. Using novel null model techniques, we reconstruct trends in mammalian endemism and describe the isolated and combined effects of physiographic, ecological, and evolutionary factors on endemism. We calculated weighted endemism for global continental ecoregions and compared the spatial distribution of endemism to niche-based, geographic null models of endemism. These null models distribute species randomly across continents, simulating their range sizes from their degree of climatic specialization. They isolate the effects of physiography (topography and climate) and species richness on endemism. We then ran linear and structural models to determine how topography and historical climate stability influence endemism. The highest rates of mammalian endemism were found in topographically rough, climatically stable ecoregions with many species. The null model that isolated physiography did not closely approximate the observed distribution of endemism (r2 = .09), whereas the null model that incorporated both physiography and species richness did (r2 = .59). The linear models demonstrate that topography and climatic stability both influenced endemism values, but that average climatic niche breadth was not highly correlated with endemism. Climate stability and topography both influence weighted endemism in mammals, but the spatial distribution of mammalian endemism is driven by a combination of physiography and species richness. Despite its relationship to individual range size, average climate niche breadth has only a weak influence on endemism. The results highlight the importance of historical biogeographic processes (e.g. centers of speciation) and geography in driving endemism patterns, and disentangle the mechanisms structuring species ranges worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号