首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural abundance values of plant 15N give an indication asto the source of nitrogen. In particular, carnivorous plantsare expected to be relatively enriched due to trophic enrichmentof their prey. Values of 15N for adultRoridula gorgonias(mean+3.02)are 4–9 greater than co-occurring non-carnivorous plantspecies and 5.24 greater than juvenileR. gorgoniasplants. Theyare also 3.5–4.26 greater than co-occurringDroseraspecieswhich, being sundews, are considered to be carnivorous. Thesehigh levels of 15N in adult plants are best explained as beingdue to access to trophically enriched N from insects. As isthe case for other carnivorous plants, leaves and stems ofR.gorgoniasare highly ultraviolet reflective and are thereforeprobably attractive to potential insect prey. This is furthersupport for this plant species being insectivorous.Copyright1998 Annals of Botany Company Nitrogen isotopes, carnivorous plants, insectivorous plant, ultraviolet,Roridula gorgoniasL.  相似文献   

2.
Many plants capture and kill insects but, until relatively recently, only carnivorous plants with digestive enzymes were known to gain directly from the nutrients of those insects. Recent studies show that some carnivorous plants lack digestive enzymes and have evolved digestive mutualisms with symbiotic insects that digest their prey for them. Rhododendron macrosepalum, a plant with sticky leaves that captures insects, has an association with symbiotic Mirid bugs that consume the insects captured. Here, we determine what the nature of the relationship is between Mirid and plant. We find that R. macrosepalum has no digestive enzymes of its own but that it does not seem to have the ability to absorb hemipteran faeces through its leaf cuticle. Naturally occurring levels of 15N and 14N were used to determine that R. macrosepalum gains no nitrogen through its association with the Mirid bugs and that it obtains all of its nitrogen from the soil. The Mirids, on the other hand, seem to obtain nitrogen from insects captured by the plant, as well as from plant tissues. The relationship between plant and Mirid is not a digestive mutualism but more likely an antagonistic relationship. This study adds to our understanding of how digestive mutualisms evolve and shows that insect capture alone, or in combination with a symbiotic insect relationship does not necessarily make a plant ‘carnivorous’.  相似文献   

3.
Plant carnivory represents an exceptional means to acquire N. Snap traps of Dionaea muscipula serve two functions, and provide both N and photosynthate. Using 13C/15N-labelled insect powder, we performed feeding experiments with Dionaea plants that differed in physiological state and N status (spring vs. autumn plants). We measured the effects of 15N uptake on light-saturated photosynthesis (A max), dark respiration (R D) and growth. Depending on N status, insect capture briefly altered the dynamics of R D/A max, reflecting high energy demand during insect digestion and nutrient uptake, followed by enhanced photosynthesis and growth. Organic N acquired from insect prey was immediately redistributed, in order to support swift renewal of traps and thereby enhance probability of prey capture. Respiratory costs associated with permanent maintenance of the photosynthetic machinery were thereby minimized. Dionaea’s strategy of N utilization is commensurate with the random capture of large prey, occasionally transferring a high load of organic nutrients to the plant. Our results suggest that physiological adaptations to unpredictable resource availability are essential for Dionaea’s success with regards to a carnivorous life style.  相似文献   

4.
Most carnivorous plants utilize insects in two ways: the flowers attract insects as pollen vectors for sexual reproduction, and the leaves trap insects for nutrients. Feeding on insects has been explained as an adaptation to nutrient‐poor soil, and carnivorous plants have been shown to benefit from insect capture through increased growth, earlier flowering and increased seed production. Most carnivorous plant species seem to benefit from insect pollination, although many species autonomously self‐pollinate and some propagate vegetatively. However, assuming that outcross pollen is advantageous and is a more important determinant of reproductive success than the nutrients gained from prey, there should be a selective pressure on carnivorous plants not to feed on their potential pollen vectors. Therefore, it has been suggested that carnivorous plants are subject to a conflict, often called the pollinator‐prey conflict (PPC). The conflict results from a trade‐off of the benefits from feeding on potentially pollinating insects versus the need to use them as pollen vectors for sexual reproduction. In this review we analyze the conditions under which a PPC may occur, review the evidence for the existence of PPCs in carnivorous plants, and explore the mechanisms that may be in place to prevent or alleviate a PPC. With respect to the latter, we discuss how plant signals such as olfactory and visual cues may play a role in separating the functions of pollinator attraction and prey capture.  相似文献   

5.
Do carnivorous plants use volatiles for attracting prey insects?   总被引:1,自引:1,他引:0  
1.  Scientists have been fascinated by carnivorous plants for centuries and they have thoroughly investigated how these plants can benefit from insect capture for example through increased growth, earlier flowering, and increased seed production. How prey is actually lured into the traps, however, is less well understood. Trapping prey may be achieved in a random way, for example by camouflaging the traps (hiding them in the surrounding vegetation), so that prey is trapped by accidental landing on the trap leaves or wind drift, or in the other extreme, trapping may involve mimicry of other attractive resources such as fruits or flowers by using specific visual or olfactory signals to attract a specific prey assemblage.
2.  We investigated for the first time volatiles of the trapping leaves of carnivorous plant species by dynamic headspace methods. We present data on the venus flytrap Dionaea muscipula , the sundew Drosera binata , and the North American pitcher plants Sarracenia flava , Sarracenia leucophylla , Sarracenia minor , and Sarracenia purpurea . A large number of compounds and relatively high emission rates were found in three of the North American pitcher plants ( S. flava , S. leucophylla , and S. minor ) with compounds typically found in flowers or fruits. This suggests together with other features (e.g. colour, nectar production) that these traps are possibly flower or fruit mimics. The leaves of S. purpurea , Dionaea muscipula , and Drosera binata emitted much weaker scents with lower numbers of components, consisting mainly of volatiles typically emitted from green leaves.
3.  We discuss whether or not the use of volatiles for attracting prey animals is linked with specific trapping mechanisms and whether carnivorous plants can be grouped into specialized 'olfactory syndromes'.  相似文献   

6.
Summary Plants of Drosera species, neighbouring noncarnivorous plants, and arthropods on or near each Drosera sp. were collected at 11 contrasting habitat locations in SW Australia. At three of the sites clones of the rare glandless mutant form of D. erythrorhiza were collected alongside fully glandular counterparts. The 15N value (15N/14N natural isotope composition) of insect-free leaf and stem fractions was measured, and the data then used to estimate proportional dependence on insect N (%NdI) for the respective species and growth forms of Drosera. The data indicated lower %NdI values for rosette than for self-supporting erect or for climbing vine species. The latter two groups showed an average %NdI value close to 50%. The %NdI increased with length and biomass of climbing but not erect forms of Drosera. 15N values of stems were positively correlated with corresponding values for leaves of Drosera. Leaf material was on average significantly more 15N enriched than stems, possibly due to delayed transport of recent insect-derived N, or to discrimination against 15N in transfer from leaf to the rest of the plant. The comparison of 15N values of insects and arthropod prey, glandless and glandular plants of D. erythrorhiza indicated %NdI values of 14.3, 12.2 and 32.2 at the respective sites, while matching comparisons based on 15N of insect, reference plants and glandular plants proved less definitive, with only one site recording a positive %NdI (value of 10.4%) despite evidence at all sites of feeding on insects by the glandular plants. The use of the 15N technique for studying nutrition of carnivorous species and the ecological significance of insect feeding of different growth forms of Drosera growing in a large range of habitats is discussed.  相似文献   

7.
Schmidt S  Stewart GR 《Oecologia》2003,134(4):569-577
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N(2)-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6 per thousand ), AM species had mostly intermediate delta(15)N values (average +0.6 per thousand ), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1 per thousand ). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2 per thousand ) and non-mycorrhizal (average +0.8 and +0.3 per thousand ) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N(2) fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4 per thousand ). Soil nitrification and plant NO(3)(-) use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO(3)(-) using taxa associated with NO(3)(-) rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar (15)N natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in (15)N, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the (15)N-enriched delta(15)N of African ECM species represent an anomaly.  相似文献   

8.
A. G. Ellis  J. J. Midgley 《Oecologia》1996,106(4):478-481
We report on a new plant-animal mutualism in which the plant Roridula gorgonias, first suspected by Darwin (1875) to be carnivorous, is, at least in part, indirectly carnivorous. This plant has sticky leaves which trap many insects but it has no digestive enzymes. Instead, trapped invertebrates are rapidly consumed by a hemipteran Pameridea roridulae, only found on this plant. However, evidence from 15N experiments suggests that R. gorgonias does derive significant amounts of nitrogen from trapped prey, apparently via exudations of P. roridulae.  相似文献   

9.
Roridula dentata is associated with hemipterans, which facilitate nitrogen assimmilation from insects. R. dentata is also associated with spiders and their role in digestion is unknown. We quantify approximately how much nitrogen Roridula assimilates from insects through "indirect digestion." Using '15N we then determine whether nitrogen absorption from hemipteran insects differs with varying spider densities. In this way, we are able to determine their nutritional role. At low spider densities, indirect digestion of prey accounts for approximately 70% of plant nitrogen. These values are comparable to methods of direct prey digestion found in other carnivorous plants. However spiders decrease the numbers of hemipteran individuals inhabiting Roridula plants and also decrease efficiency of indirect prey digestion by up to 30%. We deduce that spiders are cheaters as they exploit plant rewards without offering any rewards in return. However, indirect carnivory is still efficient enough when hemipteran densities are at their lowest, ensuring that the mutualism does not break down.  相似文献   

10.
Among carnivorous plants, Darwin was particularly fascinated by the speed and sensitivity of snap-traps in Dionaea and Aldrovanda . Recent molecular work confirms Darwin's conjecture that these monotypic taxa are sister to Drosera , meaning that snap-traps evolved from a 'flypaper' trap. Transitions include tentacles being modified into trigger hairs and marginal 'teeth', the loss of sticky tentacles, depressed digestive glands, and rapid leaf movement. Pre-adaptations are known for all these traits in Drosera yet snap-traps only evolved once. We hypothesize that selection to catch and retain large insects favored the evolution of elongate leaves and snap-tentacles in Drosera and snap-traps. Although sticky traps efficiently capture small prey, they allow larger prey to escape and may lose nutrients. Dionaea 's snap-trap efficiently captures and processes larger prey providing higher, but variable, rewards. We develop a size-selective model and parametrize it with field data to demonstrate how selection to capture larger prey strongly favors snap-traps. As prey become larger, they also become rarer and gain the power to rip leaves, causing returns to larger snap-traps to plateau. We propose testing these hypotheses with specific field data and Darwin-like experiments. The complexity of snap-traps, competition with pitfall traps, and their association with ephemeral habitats all help to explain why this curious adaptation only evolved once.  相似文献   

11.
The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes.  相似文献   

12.
  • Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey‐derived carbon backbones of amino acids for the success of Dionaea's carnivorous life‐style.
  • The present study aimed at characterizing the metabolic fate of 15N and 13C in amino acids acquired from double‐labeled insect powder. We tracked changes in plant amino acid pools and their δ13C‐ and δ15N‐signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non‐fed traps and attached petioles of Dionaea).
  • Isotope signatures (i.e., δ13C and δ15N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen‐rich transport compounds (i.e., amides) during peak time of prey digestion increased 15N‐ relative to 13C‐ abundances in amino acid pools. After completion of prey digestion, 13C in amino acid pools was progressively exchanged for newly fixed 12C. The latter process was most evident for non‐fed traps and attached petioles of plants that had received ample insect powder.
  • We argue that prey‐derived amino acids contribute to respiratory energy gain and loss of 13CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino‐nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).
  相似文献   

13.
Carnivorous plants match their animal prey for speed of movements and hence offer fascinating insights into the evolution of fast movements in plants. Here, we describe the mechanics of prey capture in aquatic bladderworts Utricularia stellaris, which prey on swimming insect larvae or nematodes to supplement their nitrogen intake. The closed Utricularia bladder develops lower-than-ambient internal pressures by pumping out water from the bladder and thus setting up an elastic instability in bladder walls. When the external sensory trigger hairs on their trapdoor are mechanically stimulated by moving prey, the trapdoor opens within 300-700 μs, causing strong inward flows that trap their prey. The opening time of the bladder trapdoor is faster than any recorded motion in carnivorous plants. Thus, Utricularia have evolved a unique biomechanical system to gain an advantage over their animal prey.  相似文献   

14.
Background and Aims Some carnivorous plants trap not only small animals but also algae and pollen grains. However, it remains unclear if these trapped particles are useless bycatch or whether they provide nutrients for the plant. The present study examines this question in Utricularia, which forms the largest and most widely spread genus of carnivorous plants, and which captures prey by means of sophisticated suction traps.Methods Utricularia plants of three different species (U. australis, U. vulgaris and U. minor) were collected in eight different water bodies including peat bogs, lakes and artificial ponds in three regions of Austria. The prey spectrum of each population was analysed qualitatively and quantitatively, and correlated with data on growth and propagation, C/N ratio and δ15N.Key Results More than 50 % of the prey of the Utricularia populations investigated consisted of algae and pollen, and U. vulgaris in particular was found to capture large amounts of gymnosperm pollen. The capture of algae and pollen grains was strongly correlated with most growth parameters, including weight, length, budding and elongation of internodes. The C/N ratio, however, was less well correlated. Other prey, such as moss leaflets, fungal hyphae and mineral particles, were negatively correlated with most growth parameters. δ15N was positively correlated with prey capture, but in situations where algae were the main prey objects it was found that the standard formula for calculation of prey-derived N was no longer applicable.Conclusions The mass capture of immotile particles confirms the ecological importance of autonomous firing of the traps. Although the C/N ratio was little influenced by algae, they clearly provide other nutrients, possibly including phosphorus and trace elements. By contrast, mosses, fungi and mineral particles appear to be useless bycatch. Correlations with chemical parameters indicate that Utricularia benefits from nutrient-rich waters by uptake of inorganic nutrients from the water, by the production of more traps per unit of shoot length, and by the capture of more prey particles per trap, as nutrient-rich waters harbour more prey organisms.  相似文献   

15.
Ants can have important, but sometimes unexpected, effects on the plants they associate with. For carnivorous plants, associating with ants may provide defensive benefits in addition to nutritional ones. We examined the effects of increased ant visitation and exclusion of insect prey from pitchers of the hooded pitcher plant Sarracenia minor, which has been hypothesized to be an ant specialist. Visitation by ants was increased by placing PVC pipes in the ground immediately adjacent to 16 of 32 pitcher plants, which created nesting/refuge sites. Insects were excluded from all pitchers of 16 of the plants by occluding the pitchers with cotton. Treatments were applied in a 2 × 2 factorial design in order to isolate the hypothesized defensive benefits from nutritional ones. We recorded visitation by ants, the mean number of ants captured, foliar nitrogen content, plant growth and size, and levels of herbivory by the pitcher plant mining moth Exyra semicrocea. Changes in ant visitation and prey capture significantly affected nitrogen content, plant height, and the number of pitchers per plant. Increased ant visitation independent of prey capture reduced herbivory and pitcher mortality, and increased the number of pitchers per plant. Results from this study show that the hooded pitcher plant derives a double benefit from attracting potential prey that are also capable of providing defense against herbivory.  相似文献   

16.
Carnivorous pitcher plants of the genus Nepenthes capture prey with a pitfall trap that relies on a micro-structured, slippery surface. The upper pitcher rim (peristome) is fully wettable and causes insects to slip by aquaplaning on a thin water film. The high wettability of the peristome is probably achieved by a combination of hydrophilic surface chemistry, surface roughness and the presence of hygroscopic nectar. Insect foot attachment could be prevented by the delayed drainage of the thin water film between the adhesive pad and the surface. Drainage should be faster for insects with a hairy adhesive system; however, they slip equally on the wet peristome. Therefore the stability of the water film against dewetting appears to be the key factor for aquaplaning. New experimental techniques may help to clarify the detailed function of the pitcher plant peristome and to explore its potential for biomimetic applications.Key words: carnivorous plants, insect aquaplaning, superhydrophilic leaves, Nepenthes, peristome  相似文献   

17.
Omnivorous animals feed on several food items that often differ in macronutrient and isotopic composition. Macronutrients can be used for either metabolism or body tissue synthesis and, therefore, stable C isotope ratios of exhaled breath (delta(13)C(breath)) and tissue may differ. To study nutrient routing in omnivorous animals, we measured delta(13)C(breath) in 20-g Carollia perspicillata that either ate an isotopically homogeneous carbohydrate diet or an isotopically heterogeneous protein-carbohydrate mixture. The delta(13)C(breath) converged to the delta(13)C of the ingested carbohydrates irrespective of whether proteins had been added or not. On average, delta(13)C(breath) was depleted in (13)C by only ca. -2 per thousand in relation to the delta(13)C of the dietary carbohydrates and was enriched by +8.2 per thousand in relation to the dietary proteins, suggesting that C. perspicillata may have routed most ingested proteins to body synthesis and not to metabolism. We next compared the delta(13)C(breath) with that of wing tissue (delta(13)C(tissue)) in 12 free-ranging, mostly omnivorous phyllostomid bat species. We predicted that species with a more insect biased diet--as indicated by the N isotope ratio in wing membrane tissue (delta(15)N(tissue))--should have higher delta(13)C(tissue) than delta(13)C(breath) values, since we expected body tissue to stem mostly from insect proteins and exhaled CO(2) to stem from the combustion of fruit carbohydrates. Accordingly, delta(13)C(tissue) and delta(13)C(breath) should be more similar in species that feed predominantly on plant products. The species-specific differences between delta(13)C(tissue) and delta(13)C(breath) increased with increasing delta(15)N(tissue), i.e. species with a plant-dominated diet had similar delta(13)C(tissue) and delta(13)C(breath) values, whereas species feeding at a higher trophic level had higher delta(13)C(tissue) than delta(13)C(breath) values. Our study shows that delta(13)C(breath) reflect the isotope ratio of ingested carbohydrates, whereas delta(13)C of body tissue reflect the isotope ratio of ingested proteins, namely insects, supporting the idea of isotopic routing in omnivorous animals.  相似文献   

18.
Scarcity of essential nutrients has led plants to evolve alternative nutritional strategies, such as myrmecotrophy (ant-waste-derived nutrition) and carnivory (invertebrate predation). The carnivorous plant Nepenthes bicalcarata grows in the Bornean peatswamp forests and is believed to have a mutualistic relationship with its symbiotic ant Camponotus schmitzi. However, the benefits provided by the ant have not been quantified. We tested the hypothesis of a nutritional mutualism, using foliar isotopic and reflectance analyses and by comparing fitness-related traits between ant-inhabited and uninhabited plants. Plants inhabited by C. schmitzi produced more leaves of greater area and nitrogen content than unoccupied plants. The ants were estimated to provide a 200% increase in foliar nitrogen to adult plants. Inhabited plants also produced more and larger pitchers containing higher prey biomass. C. schmitzi-occupied pitchers differed qualitatively in containing C. schmitzi wastes and captured large ants and flying insects. Pitcher abortion rates were lower in inhabited plants partly because of herbivore deterrence as herbivory-aborted buds decreased with ant occupation rate. Lower abortion was also attributed to ant nutritional service. The ants had higher δ(15)N values than any tested prey, and foliar δ(15)N increased with ant occupation rate, confirming their predatory behaviour and demonstrating their direct contribution to the plant-recycled N. We estimated that N. bicalcarata derives on average 42% of its foliar N from C. schmitzi wastes, (76% in highly-occupied plants). According to the Structure Independent Pigment Index, plants without C. schmitzi were nutrient stressed compared to both occupied plants, and pitcher-lacking plants. This attests to the physiological cost of pitcher production and poor nutrient assimilation in the absence of the symbiont. Hence C. schmitzi contributes crucially to the nutrition of N. bicalcarata, via protection of assimilatory organs, enhancement of prey capture, and myrmecotrophy. This combination of carnivory and myrmecotrophy represents an outstanding strategy of nutrient sequestration.  相似文献   

19.
Habitat degradation is one of the greatest threats to biodiversity worldwide and the main contributor to the decline of many carnivorous plant species. For carnivorous plants in the southeastern United States, including many Pinguicula species (butterwort, Lentibulariaceae), degradation via altered fire regime has been implicated in their decline. Despite this decline, limited empirical research has been conducted examining the influence of habitat structural changes (through natural succession or human management) on reproduction and prey capture by carnivorous plants. The objectives of our study were to compare reproduction and prey capture for Pinguicula lutea (yellow butterwort) in habitats with different vegetation structures in the Florida Panhandle, where differences were largely due to management history. Pinguicula lutea is a self-compatible carnivorous plant that inhabits fire-dependent longleaf pine savannas of the southeastern United States and is threatened in the state of Florida. In 2014 and 2015, 13 sites were identified occupying three different habitat structures: maintained (intermittently mowed), grassy (dominated by Aristida stricta var. beyrichiana), and woody (encroachment by Hypericum and Ilex). Reproductive output was determined by assessing fruit set and ovule fertilization rate at each site. Additionally, prey availability and prey capture were assessed at each habitat site. In general, there were no differences in either measure of reproduction across habitat structure types. There were differences in prey abundance of Collembola, Diptera, and total arthropods both in terms of availability and capture. Total arthropod availability and prey capture were lowest in grassy sites compared to maintained habitat sites and woody habitat sites. Microclimatic conditions associated with each habitat structure and leaf morphology or physiology could explain the observed arthropod abundance and prey capture patterns. This study is the first ecological assessment of plant–insect interactions for Pinguicula species of the southeastern US and highlights the importance of habitat quality and management for this understudied group of carnivorous plants.  相似文献   

20.
It has been sustained that the sticky traps present in some carnivorous plants could have evolved from ancestor species bearing leaves covered with secreting glands formerly associated with a defensive function. In this study, we evaluated the interaction of the carnivorous plant Pinguicula moranensis with its insect herbivores to assess the defensive role of the glandular trichomes. Firstly, we estimated the standing levels of insect herbivory in field conditions. We also evaluated the response of herbivore insects to the removal of the secreting glands from the leaves of P. moranensis in field and laboratory conditions. The mean damage was 1.61%, and half of the sampled plants showed no damage. The low level of herbivory in the field suggests that P. moranensis has an efficient defense ability. In the field experiment, after 25 d of exposure to natural damage, treated glandless plants received 18 times more damage than control plants. In the laboratory, the consumption of glandless tissue was three times higher during a 6 h evaluation period. Overall, our results provide evidence that secreting trichomes in Pinguicula are not only associated with prey capture but also have a defensive role. The defensive function could have favored the evolution of the sticky traps, the most extended prey‐capture strategy among carnivorous plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号