首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
ERRATA     
  相似文献   

2.
The three-dimensional coordinates for the -carbon atoms of crambin and basic pancreatic trypsin inhibitor (BPTI) were determined from the respective -carbon trace stereograms using an improved Simplex algorithm. This algorithm was used in a two-step process to estimate thez-coordinate values. In one approach, an average interatomic distance value, an approximate viewing angle, and a table of digitized values forx left,y left andx right,y right are provided in the first step. In the second step, thez-coordinate values are derived by varyingz to minimize the bond distance error (Rossmann and Argos, 1980). In another approach, only a reference bond distance table is provided along with the table ofx left,y left andx right,y right digitized values. In the first step, the viewing angle (), a combined scale and viewing distance parameter (q), a rotational angular distortion from digitizing and/or photocopying (z), and translational distortion factors (x err andy err) are calculated. In the second step, thez-coordinate values are varied to minimize the bond distance error. RMS difference values of less than 1.5 Å were obtained for both crambin and BPTI -carbon atoms.  相似文献   

3.
D R Ripoll  H A Scheraga 《Biopolymers》1988,27(8):1283-1303
A new approach to the multiple-minima problem in protein folding is presented. It is assumed that the molecule is driven toward the native structure by three types of mechanism. The first one involves an optimization of the electrostatic interactions, whereby the molecule evolves toward conformations in which the charge distribution becomes energetically more favorable. The second mechanism involves a Monte Carlo–energy minimization approach, and the third one is a backtrack mechanism that acts in the opposite direction, increasing the energy—the third type of movement provides a means to perturb the molecule when it is trapped in a stable but energetically unfavorable local energy minimum. This paper describes the implementation of a model based on these mechanisms, and illustrates its effectiveness by computations on different arbitrary starting conformations of a terminally blocked 19-residue chain of poly(L -alanine) for which the global minimum apparently corresponds to the right-handed α-helix. In all cases, the global minimum was attained, even when the starting conformation was a left-handed α-helix. In the latter case, the trajectory of conformations passed through partially melted forms of the left-handed α-helix (because of electrostatic defects at the ends), and then through the formation of structures leading to the more stable right-handed α-helix.  相似文献   

4.
Recent studies have shown that the feeling of body ownership can be fooled by simple visuo-tactile manipulations. Perceptual illusions have been reported in which participants sense phantom touch seen on a rubber hand (rubber hand illusion). While previous studies used homologous limbs for those experiments, we here examined an illusion where people feel phantom touch on a left rubber hand when they see it brushed simultaneously with brushes applied to their right hand. Thus, we investigated a referral of touch from the right to the left hand (across the body midline). Since it is known from animal studies that tactile illusions may alter early sensory processing, we expected a modulation of the primary somatosensory cortex (SI) corresponding to this illusion. Neuromagnetic source imaging of the functional topographic organization in SI showed a shift in left SI, associated with the strength of the referral of touch. Hence, we argue that SI seems to be closely associated with this perceptual illusion. The results suggest that the transfer of tactile information across the body midline could be mediated by neurons with bilateral tactile receptive fields (most likely BA2).  相似文献   

5.
Hemagglutinin (HA) is a membrane protein present on the influenza viral envelope. It is responsible for molecular recognition between the viral particle and the host cell, as well as fusion of the viral envelope to the endosome bilayer. Because it is essential for influenza viral infection and replication, it has become a target for the design of anti-influenza drugs. Previous studies have identified two small molecule HA ligands (CL-385319 and 1L) that inhibit infection with pseudovirus H5N1 with different potency. In order to compare their different inhibitory activities and shed light on drug design targeting the HA protein, we conducted a variety of theoretical calculations, including docking, molecular dynamics simulations, free energy calculations, as well as quantum calculations to investigate interactions between these two ligands and the HA protein. We found that molecule 1L has stronger π–π interactions with the side chains of residues F1102 and M241 compared with molecule CL-385319. We propose that these stronger π–π interactions are responsible for the higher inhibitory activity of molecule 1L. Our calculations will aid drug design studies targeting the HA protein.
Figure
Noncovalent interactions between ligands CL-385319 (left) and 1L (right) and hemagglutinin (HA) residue F1102. CL-385319-1, 1L-1 and 1L-2 are case saddle points  相似文献   

6.
《Biophysical journal》2023,122(1):143-155
The GASright motif, best known as the fold of the glycophorin A transmembrane dimer, is one of the most common dimerization motifs in membrane proteins, characterized by its hallmark GxxxG-like sequence motifs (GxxxG, AxxxG, GxxxS, and similar). Structurally, GASright displays a right-handed crossing angle and short interhelical distance. Contact between the helical backbones favors the formation of networks of weak hydrogen bonds between Cα–H carbon donors and carbonyl acceptors on opposing helices (Cα–H···O=C). To understand the factors that modulate the stability of GASright, we previously presented a computational and experimental structure-based analysis of 26 predicted dimers. We found that the contributions of van der Waals packing and Cα–H hydrogen bonding to stability, as inferred from the structural models, correlated well with relative dimerization propensities estimated experimentally with the in vivo assay TOXCAT. Here we test this model with a quantitative thermodynamic analysis. We used Förster resonance energy transfer (FRET) to determine the free energy of dimerization of a representative subset of seven of the 26 original TOXCAT dimers using FRET. To overcome the technical issue arising from limited sampling of the dimerization isotherm, we introduced a globally fitting strategy across a set of constructs comprising a wide range of stabilities. This strategy yielded precise thermodynamic data that show strikingly good agreement between the original propensities and ΔG° of association in detergent, suggesting that TOXCAT is a thermodynamically driven process. From the correlation between TOXCAT and thermodynamic stability, the predicted free energy for all the 26 GASright dimers was calculated. These energies correlate with the in silico ΔE scores of dimerization that were computed on the basis of their predicted structure. These findings corroborate our original model with quantitative thermodynamic evidence, strengthening the hypothesis that van der Waals and Cα–H hydrogen bond interactions are the key modulators of GASright stability.  相似文献   

7.
The experimentally observed geometry of a miniature double helix of high anti (χCN fixed ? 120°) nucleic acid structure indicates substantial interstrand base stacking with little intrastrand base stacking. This geometry is consistent with the right-handed vertical double helix in which the base planes are parallel to helical axis proposed by Olson [(1977) Proc. Natl. Acad. Sci. USA 74 , 1775] from theoretical calculations. The experimental data do not agree with the left-handed model in which the base planes are perpendicular to helical axis that has been proposed by Yathindra and Sundaralingam [(1976) Nucl. Acids Res. 3 , 729]. The theoretically computed chemical shift changes for the various double-helical configurations show that for the system examined, only the vertical model can explain the experimentally observed shift trends. The melting curve for the helix–coil transition for high anti dinucleoside monophosphate has been observed for the first time. Even though the experimental data support vertical double helices when χCN is fixed at 120°, data on naturally occurring nucleic acid structures indicate that they have no proclivity to enter into vertically stabilized double-helical arrays.  相似文献   

8.
In Vol. 27, No. 5, May 20, 1944, page 403, in the eighth line from the bottom of the page, the comma after "intensity" should be a semicolon. On page 413, in the second formula from the bottom of the page, for See PDF for Equation read See PDF for Equation On the same page, formula 2 should read See PDF for Equation On page 414, line 3, at the end of the line add "or" to read "of the level of I or of F." On page 422, in the first line below the figure legend, for "illuminate" read "illuminated." On page 430, line 22, for "lighteb dars" read "lighted bars."  相似文献   

9.

Background and Purpose

Since patients with phenylketonuria (PKU) have to follow a lifelong restriction of natural protein to lower phenylalanine-intake, they never eat fish. This diet may lead to a chronic deficit of omega-3 and omega-6 fatty acids with the risk of early atherosclerotic changes. The aim of the study was to analyse the fatty acid profile of PKU patients and to correlate the results with surrogate markers of early atherosclerotic changes [enhanced carotid intima media thickness (CIMT) and ß-stiffness index] and platelet activation.

Methods

In 43 PKU patients and in 58 healthy controls we prospectively examined the fatty acid profile, CIMT, ß-stiffness index and platelet activation (flow cytometric determination of markers of platelet activation). CIMT was measured bilaterally by ultrasound. CIMT mean was defined as the mean value of the sum of CIMT left and CIMT right.

Results

Despite of lower HDL-cholesterol and higher triglyceride concentrations in the PKU group, there was no significant difference in the omega-6 or omega-3 fatty acid profile, CIMT, ß-stiffness index between both groups. Platelet activation was not enhanced in the PKU group.

Conclusions

Fish-free diet does not induce early atherosclerotic changes or enhanced platelet activation in PKU patients.  相似文献   

10.
We have studied the properties of simple models of linear and star-branched polymer chains confined in a slit formed by two parallel impenetrable walls. The polymer chains consisted of identical united atoms (homopolymers) and were restricted to a simple cubic lattice. Two macromolecular architectures of the chain: linear and regular stars with three branches of equal length, were studied. The excluded volume was the only potential introduced into the model and thus the system was athermal. Monte-Carlo simulations with the sampling algorithm based on the chains local changes of conformation were carried out for chains with different lengths as well as for different distances between the confining surfaces. We found that the properties of model chains differ for both macromolecular architectures but a universal behavior for both kinds of chains was also found. Investigation of the frequency of chain-wall contacts shows that the ends of the chains are much more mobile than the rest of the chain, especially in the vicinity of the branching point in star polymers.Figure The scheme of a star-branched (left) and a linear (right) chain located between two parallel impenetrable surfaces.  相似文献   

11.
Relations between the brain hemispheres were studied during the human perception of various types of Russian intonations. Fifty healthy subjects with normal hearing took part in the tests based on the method of monaural presentation of stimuli—the sentences that represented the main kinds of Russian emotional and linguistic intonations. The linguistic intonations expressed: various communicative types of sentences; completeness/incompleteness of a statement; various types of the syntagmatic segmentation of the statements; various logical stress. Sentences that required the identification of the emotion quality were used to study the perception of emotional intonations. The results of statistical analysis of latent periods and errors made by the test subjects demonstrated a significant preference of theright hemisphere in perceiving emotional intonations and complete/incomplete sentences; sentences with different logical stress were perceived mainly by theleft hemisphere. No significant differences were found in the perception of various communicative types of sentences and statements with different syntagmatic segmentation. The obtained data also testify to a difference in the degree of the involvement of human hemispheres in the perception and analysis of prosodic characteristics of the speech in males and females.  相似文献   

12.
Our understanding of the composition of multi-clonal malarial infections and the epidemiological factors which shape their diversity remain poorly understood. Traditionally within-host diversity has been defined in terms of the multiplicity of infection (MOI) derived by PCR-based genotyping. Massively parallel, single molecule sequencing technologies now enable individual read counts to be derived on genome-wide datasets facilitating the development of new statistical approaches to describe within-host diversity. In this class of measures the FWS metric characterizes within-host diversity and its relationship to population level diversity. Utilizing P. falciparum field isolates from patients in West Africa we here explore the relationship between the traditional MOI and FWS approaches. FWS statistics were derived from read count data at 86,158 SNPs in 64 samples sequenced on the Illumina GA platform. MOI estimates were derived by PCR at the msp-1 and -2 loci. Significant correlations were observed between the two measures, particularly with the msp-1 locus (P = 5.92×10−5). The FWS metric should be more robust than the PCR-based approach owing to reduced sensitivity to potential locus-specific artifacts. Furthermore the FWS metric captures information on a range of parameters which influence out-crossing risk including the number of clones (MOI), their relative proportions and genetic divergence. This approach should provide novel insights into the factors which correlate with, and shape within-host diversity.  相似文献   

13.
It has long been presumed that activation of the apoptosis-initiating Death Receptor 5, as well as other structurally homologous members of the TNF-receptor superfamily, relies on ligand-stabilized trimerization of noninteracting receptor monomers. We and others have proposed an alternate model in which the TNF-receptor dimer—sitting at the vertices of a large supramolecular receptor network of ligand-bound receptor trimers—undergoes a closed-to-open transition, propagated through a scissorslike conformational change in a tightly bundled transmembrane (TM) domain dimer. Here we have combined electron paramagnetic resonance spectroscopy and potential-of-mean force calculations on the isolated TM domain of the long isoform of DR5. The experiments and calculations both independently validate that the opening transition is intrinsic to the physical character of the TM domain dimer, with a significant energy barrier separating the open and closed states.Death receptor 5 (DR5) is a member of the tumor necrosis factor receptor (TNFR) superfamily that mediates apoptosis when bound by its cognate ligand, TNF-related apoptosis-inducing ligand (1). Upregulated in cancer cells, DR5 is among the most actively pursued anticancer targets (2). TNF-related apoptosis-inducing ligand binds to preassembled DR5 trimers at their extracellular domains, causing the formation of oligomeric ligand-receptor networks that are held together by receptor dimers (3). In the long-isoform of DR5, this dimer is crosslinked via ligand-induced disulfide bond formation between two transmembrane (TM) domain α-helices at Cys-209, and is further stabilized by a GxxxG motif one helix-turn downstream (3).Our recent study of the structurally homologous TNFR1 showed that receptor activation involves a conformational change that propagates from the extracellular domain to the cytosolic domain through a separation (or opening) of the TM domains of the dimer (4). We have therefore hypothesized that the activation of DR5, and indeed all structurally homologous TNF-receptors, involves a scissorslike opening of the TM domain dimer (Fig. 1).Open in a separate windowFigure 1Activation model of the DR5-L TM dimer. The sequence and positions of the disulfide bond and TOAC spin label (top), along with our previously published model (bottom, left) are shown. We propose an activation model (bottom, right) in which the transmembrane dimer pivots at its disulfide bond to reach an active open conformation.Using electron paramagnetic resonance (EPR) spectroscopy, a technique that has been used previously to study TM helix architecture and dynamics (5,6), and potential-of-mean force (PMF) calculations (7,8), this study addresses the question of whether the isolated disulfide-linked DR5-L TM domain dimer occupies distinct open and closed states (Fig. 1), and how its dynamic behavior contributes to the free-energy landscape of the opening transition of the full-length receptor.The DR5-L TM domain was synthesized with TOAC, an amino acid with a nitroxide spin label rigidly fixed to the α-carbon (9), incorporated at position 32 (Fig. 1), with some minor modification to facilitate EPR measurements. Previous work confirmed that this peptide forms disulfide-linked dimers (e.g., via comparison to 2-ME treated sample) and a negligible population of higher-order oligomers (further supported by model fitting of the EPR data below). For peptide work, residues were renumbered such that Thr-204 corresponds to Thr-1, and so on. The cytosolic Cys-29 (which we previously showed does not participate in a disulfide bond in cells) was replaced with serine to prevent the formation of antiparallel disulfide-linked dimers, and Trp-34 was replaced with tyrosine to prevent intrinsic fluorescence in fluorescence studies (not published). Continuous-wave (CW) dipolar EPR (sensitive only to spin-spin distances <25 Å) was used to measure TOAC-TOAC distances within the TM dimers and revealed an ordered Gaussian distribution centered at 16 Å (full width half-maximum (FWHM) = 4 Å), corresponding to a closed state (Fig. 2 A). Double electron-electron resonance (DEER) (sensitive to spin-spin distances from 15 to 60 Å) also detected a short distance consistent with the dipolar EPR data, along with a longer, disordered component (32.9 Å, FWHM = 28 Å) (Fig. 2 B). Together, these measurements indicate the presence of a compact, ordered closed state and a broader, disordered open state. EPR on oriented membranes also indicated two structural states. Global fitting revealed two populations of spin-label tilt angles (orientation of the nitroxide principal axis relative to the membrane normal): a narrow conformation (24°, FWHM = 20°), and a disordered conformation (50°, FWHM = 48°) (Fig. 2 C). This bimodal orientational distribution (Fig. 2 C) is remarkably consistent with the bimodal distance distribution (Fig. 2 B).Open in a separate windowFigure 2EPR spectra (left) of 32-TOAC-DR5 in lipid, and resulting structural distributions (right). (A) CW dipolar EPR spectra (left) of dimer (1 mM diamide) and monomer (1 mM 2-mercaptoethanol). Best-fit spin-spin distance distribution was a single Gaussian centered at 16 ± 2 Å (right). (B) The DEER waveform (left) of 32-TOAC-DR5 dimer was best fit (right) to a two-Gaussian distribution. The short distance was constrained to agree with the CW data, because DEER has poor sensitivity for distances <20 Å. The long-distance distribution is centered at 32.9 Å and is much broader. (C) CW EPR spectra (left) of 32-TOAC-DR5, with the membrane-normal oriented parallel (red) and perpendicular (blue) to the field. Simultaneous (global) fitting of these spectra reveals narrow and broad components (right). (In panels B and C, the overall distribution is plotted as black, while the closed and open components are plotted as green and magenta, respectively.)We subsequently conducted a PMF calculation (10) using the DR5-L TM dimer starting configuration developed by our group previously (3), embedded in a DMPC bilayer, with the Leu-32/Leu-32 Cα distance as the reaction coordinate. Three calculations were run from independent starting configurations, each using 50 windows spaced in 0.5° increments, and run for 20 ns at each window (totaling 3 μs). Each of the calculations yielded a similar result, and the averaged free energy curve (Fig. 3 A) agrees remarkably well with our EPR measurements: a narrow distribution at the closed conformation (∼16 Å, Fig. 3 B) separated by an ∼3 kcal/mol energy barrier from a broad distribution of accessible open conformations at ∼27 Å, (Fig. 3 C). Each of the three individual PMF plots can be found in Fig. S1 in the Supporting Material.Open in a separate windowFigure 3(A) PMF calculation of the DR5 TM domain dimer along the Leu-32/Leu-32 distance reaction coordinate. The PMF calculation reveals a narrow closed state and a broader open state separated by a free energy barrier. Representative snapshots of the (B) closed state and (C) open state.In the closed state, the helices are tightly packed at the GxxxG interfacial motif and all the way down the juxtaposed helix faces at residues Ala-18, Leu-22, Ala-25, and Val-26. The tight packing is aided by kinking and twisting of the two helices around their common axis, increasing the interacting surface area. In the open conformations, the Ala-18, Leu-22, Ala-25, and Val-26 pairs are dissociated and, interestingly, the GxxxG motif at Gly-10 and Gly-14 remains tightly packed. The open state energy well is only slightly less favorable than the closed state (by ∼2 kcal/mol), and its free energy profile is relatively broad and flat. The increased crossing angle in the open state is facilitated by straightening of the helix kink and is not accommodated by a change in bilayer thickness (see Fig. S3, A and B).The observed change in helix-helix distance (11 Å between the two minima in the PMF) is extremely close to that observed previously in live-cell FRET studies of a constitutively active form of TNFR1 (∼8 Å change between states using large fluorescence probes at the cytosolic domains) (4). The change observed in the EPR data (17 Å) may be an overestimate because the measurement is made between TOAC spin labels that likely protrude from the two helices, depending on rotational orientation. These results collectively show that activation of these receptors requires a small, but clearly significant conformational opening of the TM domains. One important note is that our EPR experiments recapitulate the equilibrium distribution of the two states despite there being no driving force to traverse the barrier between them (∼3 kcal/mol in the closed-to-open transition and ∼1 kcal/mol in the open-to-closed transition, Fig. 3). We do not interpret the results to mean that the dimer necessarily traverses these barriers at 4°C. Rather, there likely exist multiple reaction paths for dimerization of the abstracted TM domains. Finally, in the context of the full-length receptor, how the ligand induces a conformational change capable of overcoming the closed-to-open barrier remains an important question.Whether the observed structural transition in the TM domain dimer of the long-isoform of DR5 is a ubiquitous conformational switch that acts over the entire TNFR superfamily remains unknown. Vilar et al. (11) first proposed a similar scissors-model for activation of p75 neurotrophin receptor, which has a cysteine at the center of its TM helix. The short isoform of DR5 lacks a TM domain cysteine, but does form noncovalent dimers in cells, with likely TM domain dimer contacts (3). Among the other closely related and structurally homologous members of the TNFR superfamily, TNFR1 contains a cysteine at the center of the TM domain, but lacks any discernible small residue motifs (e.g., GxxxG). TNFR2 lacks a TM cysteine on the extracellular side, but does have a GxxxG motif positioned similarly to that of DR5. On the other hand, Death Receptor 4, whose functional distinction from DR5 has remained somewhat elusive, lacks both a cysteine and any recognizable small-residue hydrophobic motif.In summary, we have extended recent findings that point to the TM domain of DR5 as an essential structural component in the conformational change associated with activation. Our findings that the DR5-L TM domain occupies distinct open and closed states, separated by a substantial energy barrier, points the way to further studies across the TNF-receptor superfamily.  相似文献   

14.
In addition to the Correction in Vol. iii, No. 3, January 20, 1921, on page 149, Vol. iii, No. 2, November 20, 1920, line 13, for 92.57 read 89.10; page 154, lines 15, 28, and 32, for O read O+10; page 155, line 3 of the figure legend, for O read O+10.  相似文献   

15.
On page 387, Vol. 13, No. 3, January 20, 1930, the numbers in the last column of Table 1 should be divided by 10 to give the true values of k''. In the next to the last line, under Table 1, for value of C = 0.337 read value of C = –0.337.  相似文献   

16.
We have carried out B3PW91 and MP2-FC computational studies of dimethyl sulfoxide, (CH3)2SO, and dimethyl sulfone, (CH3)2SO2. The objective was to establish quantitatively the basis for their high polarities and boiling points, and their strong solvent powers for a variety of solutes. Natural bond order analyses show that the sulfur–oxygen linkages are not double bonds, as widely believed, but rather are coordinate covalent single S+→O bonds. The calculated electrostatic potentials on the molecular surfaces reveal several strongly positive and negative sites (the former including σ-holes on the sulfurs) through which a variety of simultaneous intermolecular electrostatic interactions can occur. A series of examples is given. In terms of these features the striking properties of dimethyl sulfoxide and dimethyl sulfone, their large dipole moments and dielectric constants, their high boiling points and why they are such good solvents, can readily be understood. Figure Dimers of dimethyl sulfoxide (DMSO; left) and dimethyl sulfone (DMSO2; right) showing O S—O -hole bonding and C H—O hydrogen bonding. Sulfur atoms are yellow, oxygens are red, carbons are gray and hydrogens are white  相似文献   

17.
Eugene E. Harris and Jody Hey (1999). Human Demography in the Pleistocene: Do Mitochondrial and Nuclear Genes Tell the Same Story? Evol. Anthropol. 8: 81–86. On page 84 at the end of 1st paragraph of the 2nd column should read “. . .intergenetic variation Xq 13.3 to about 535,000 years,39. . .” On page 84 in the 2nd paragraph of the 3rd column should read “. . .and seem to indicate widespread or restricted gene flow among populations.”19,48,49 On page 85 in the 2nd paragraph of the 1st column should read “. . .united by gene flow at zones of overlap.”53  相似文献   

18.
Subterranean rodents spend most of the day inside underground tunnels, where there is little daily change in environmental variables. Our observations of tuco-tucos (Ctenomys aff. knighti) in a field enclosure indicated that these animals perceive the aboveground light-dark cycle by several bouts of light-exposure at irregular times during the light hours of the day. To assess whether such light-dark pattern acts as an entraining agent of the circadian clock, we first constructed in laboratory the Phase Response Curve for 1 h light-pulses (1000lux). Its shape is qualitatively similar to other curves reported in the literature and to our knowledge it is the first Phase Response Curve of a subterranean rodent. Computer simulations were performed with a non-linear limit-cycle oscillator subjected to a simple model of the light regimen experienced by tuco-tucos. Results showed that synchronization is achieved even by a simple regimen of a single daily light pulse scattered uniformly along the light hours of the day. Natural entrainment studies benefit from integrated laboratory, field and computational approaches.  相似文献   

19.
On page 54, right column, the final line of the text should read: Supported by the RSF grant no. 15-15-20008.  相似文献   

20.
The organization of tRNA genes on the circular 32 kb mitochondrial genome of the ascomycete Aspergillus nidulans has been studied by gel transfer hybridization and by DNA sequencing. Most of the tRNA genes are tightly clustered within two regions (1 kb each) flanking the split gene for the large ribosomal subunit RNA. The upstream cluster contains nine genes, the downstream cluster eleven genes. The twenty tRNA genes are on the same strand as the two rRNA genes and are separated from each other by AT-rich spacer sequences, usually consisting of only a few nucleotides. Two tRNA genes (leul and ala) are joined end to end. The occurrence of two tRNAGty genes is the first exception to the observation that in mitochondria all four-codon families are read by a single tRNA. Both genes are adjacent and show extensive sequence homology, suggesting relatively recent origin by gene duplication. The product of glyl has a U in the wobble position as do all other tRNA gene products specific for four-codon families, whereas the gly2 product, which has a rare A in the same position, should read only the codon GGU. The products of metl and thr have an A and G in positions 18 and 55, respectively, like the mitochondrial tRNAfMet and tRNAThr of Neurospora crassa. Other unusual features are the replacement of the invariant G-C pair at positions 53 and 61 by A-T in met2, glyl and gly2, the replacement of the invariant T at position 8 by A in phe and G in pro and the deletion of a nucleotide at position 9 in ser2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号