首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. After a discussion of the sources of error involved in the study of dark adaptation, an apparatus and a procedure are described which avoid these errors. The method includes a control of the initial light adaptation, a record of the exact beginning of dark adaptation, and an accurate means of measuring the threshold of the fovea after different intervals in the dark. 2. The results show that dark adaptation of the eye as measured by foveal vision proceeds at a very precipitous rate during the first few seconds, that most of the adaptation takes place during the first 30 seconds, and that the process practically ceases after 10 minutes. These findings explain much of the irregularity of the older data. 3. The changes which correspond to those in the fovea alone are secured by correcting the above results in terms of the movements of the pupil during dark adaptation. 4. On the assumption that the photochemical effect of the light is a linear function of the intensity, it is shown that the dark adaptation of the fovea itself follows the course of a bimolecular reaction. This is interpreted to mean that there are two photolytic products in the fovea; that they are disappearing because they are recombining to form anew the photosensitive substance of the fovea; and that the concentration of these products of photolysis in the sense cell must be increased by a definite fraction in order to produce a visual effect. 5. It is then suggested that the basis of the initial event in foveal light perception is some mechanism that involves a reversible photochemical reaction of which the "dark" reaction is bimolecular. Dark adaptation follows the "dark" reaction; sensory equilibrium is represented by the stationary state; and light adaptation by the shifting of the stationary state to a fresh point of equilibrium toward the "dark" side of the reaction.  相似文献   

2.
The intracellular distribution and level of acid hydrolases in Ochromonas malhamensis were studied in cells grown osmotrophically in a defined medium, in a carbon-free starvation medium, and during phagotrophy in each of these media. By cytochemical techniques, little enzymic reaction product was observed in the vacuoles of osmotrophic cells grown in the defined medium. Starved cells, however, contained autophagic vacuoles and cannibalized other Ochromonas cells. Dense enzymic reaction product was observed in the digestive vacuoles and in the Golgi cisternae of these starved cells. Moreover, starved cells and cells grown in a nutritionally complete medium ingested Escherichia coli which appeared in digestive vacuoles containing enzymic reaction product. Biochemical assays for lysosomal acid phosphatase (E.C. 3.1.3.2 orthophosphoric monoester phosphohydrolase) and acid ribonuclease (E.C. 2.7.7.16 ribonucleate nucleotido-2'-transferase) were done on Ochromonas cultures in the same experimental treatments and under identical assay conditions as the cytochemical study. During starvation, the acid hydrolase specific activities were consistently twice those found in cells grown in an osmotrophic complete medium. Ochromonas fed E. coli showed no increase in acid hydrolase specific activity as compared to controls not fed E. coli. The latency of lysosomal acid hydrolases in cells fixed with glutaraldehyde was reduced, suggesting that this fixative increases lysosomal membrane permeability and may release enzymes or their reaction products into the cytoplasmic matrix during cytochemical analysis. This could explain the cytoplasmic staining artifact sometimes observed with glutaraldehyde-fixed cells when studied by the Gomori technique. This study confirms that Ochromonas malhamensis, a phytoflagellate, does produce digestive vacuoles and can ingest bacteria, thereby fulfilling its role as a heterotroph in an aquatic food chain. When Ochromonas is grown in a nutritionally complete osmotrophic medium, phagocytosis causes appearance of acid hydrolases in the digestive vacuoles, whereas the total activity of the enzymes remains unchanged. An organic carbon-free medium strongly stimulates acid hydrolaes activity and causes these enzymes to appear in the digestive vacuoles whether phagocytosis occurs or not.  相似文献   

3.
4.
The latent period in the response of Mya to illumination varies inversely as the duration of the exposure to which it is subjected. The reciprocal of the latent period, measuring the velocity of the process which underlies it, is a linear function of the exposure period. Since the duration of the exposure represents the amount of photochemical activity, it is concluded that the substances formed at that time act to catalyze a chemical reaction which determines the duration of the latent period. This explanation is in accord with the previous work on the photochemical reaction and with the effect of temperature on the latent period. As a result of the combined investigations there is presented a concrete hypothesis for the mechanism of photic reception in Mya.  相似文献   

5.
The temperature coefficient of photosynthesis in Ulva (between 17° and 27°C.) is 1.81. This may be explained by assuming that the process involves a light reaction with a low coefficient followed by an ordinary reaction with a high coefficient.  相似文献   

6.
1. Ciona possesses two means of responding to an increase in the intensity of illumination. One is by means of a local reaction; the other is by a retraction reflex of the body as a whole. 2. The "ocelli" are not photoreceptors. The photosensitive area is in the intersiphonal region containing the neural mass. This area contains no pigment. 3. The reaction time to light is composed of a sensitization period during which Ciona must be exposed to the light, and of a latent period during which it need not be illuminated in order to react to the stimulus received during the sensitization period. 4. The duration of the reaction time varies inversely as the intensity. Analysis shows the latent period to be constant. The relation between the sensitization period and the intensity follows the Bunsen-Roscoe rule. 5. During dark adaptation the reaction time is at first large, then it decreases until a constant minimum is reached. 6. A photochemical system consisting of a reversible reaction is suggested in order to account for the phenomena observed. This system includes a photosensitive substance and its precursor, the dynamics of the reaction following closely the peculiarities of the photosensitivity of Ciona. 7. It is shown that in order to produce a reaction, a constant ratio must be reached between the amount of sensitive substance broken down by the stimulus and the amount previously broken down. 8. From the chemical system suggested certain experimental predictions were made. The actual experiments verified these predictions exactly. 9. The results obtained with regularly repeated stimulation not only fail to show any basis for a learning process or for the presence of a "higher behavior," but follow the requirements of the photochemical system suggested before.  相似文献   

7.
1. The effect of temperature on the reaction time of Mya to light is mainly confined to the latent period. The sensitization period, representing a photochemical process, is changed comparatively little. 2. The relation between the latent period and the temperature is adequately expressed by the Arrhenius equation, for temperatures below 21°C. Above this temperature, the latent period becomes increasingly longer than is required by the Arrhenius formula when µ = 19,680. 3. These deviations, occurring above the highest environmental temperature of Mya, are explained on the assumption that the principal product formed during the latent period is inactivated by heat. 4. Calculation of the velocity of the hypothetical inactivation reaction at different temperatures shows that it also follows the Arrhenius rule when µ = 48,500. This value of µ corresponds to those generally found for spontaneous inactivations and destructions.  相似文献   

8.
1. Experiments are presented which show that the latent period in the photosensory response of Ciona is inversely proportional to the duration of the exposure period to light. From this it is found that the velocity of the chemical reaction which determines the latent period is directly proportional to the concentration of photochemical products formed during the exposure period. This is interpreted as showing that the two processes form a coupled photochemical reaction, of which the secondary reaction proceeds only in the presence of products from the primary reaction. This coupling may be a catalysis or a direct chemical relation. 2. Further experiments show that the relation between temperature and the latent period is accurately described by the Arrhenius equation in which µ = 16,200. The precise numerical value of µ tentatively identifies the latent period process as an oxidation reaction which is catalyzed by iron. 3. The photocatalytic properties of certain iron compounds are used as a model for the coupled photochemical reaction suggested for the photosensory mechanism of Ciona and Mya.  相似文献   

9.
The photoinactivation of complement has been studied with a view to determining if possible how many kinds of molecules disappeared during the reaction. It was found that: 1. The apparent course of photoinactivation is that of a monomolecular reaction. 2. Diffusion is not the limiting factor responsible for this fact, because the temperature coefficient of diffusion is much higher than that of photoinactivation (Q 10 = 1.22 to 1.28, and Q 10 = 1.10 respectively). 3. There is no change in the transparency of serum solutions during photoinactivation, at least for light of the effective wave-length, which is in the ultra-violet region probably at about 2530 Ångström units. It is pointed out that under these conditions only one interpretation is possible; namely, that during photoinactivation a single disappearing molecular species governs the rate of reaction. This substance must be primarily responsible for the hemolytic power of serum when it is used as complement.  相似文献   

10.
1. The decay curve of the light produced in the course of the luminescent reaction in Cypridina is, after the first second, in complete agreement with the theoretical expectation for a monomolecular reaction, if light intensity at any instant is assumed to be proportional to reaction velocity at that instant. It is shown that for such a reaction log I = - kt + log Ak and that the experimental values satisfy this equation. 2. The first second or two of the reaction is characterized by a brilliant initial flash, whose value is much too high to accord with the succeeding intensities and with the above formula. It is suggested that this initial high reaction velocity is an indication of a heterogeneous system. 3. Identical solutions run simultaneously give decay curves which check within the limits of the photographic error. 4. Stirring does not affect the reaction velocity or the form of the decay curve. 5. Reaction velocity is proportional to enzyme concentration, over the range of concentrations used in the study. 6. Changes in the concentration of the substrate do not affect the value of k, when all other factors are held constant. A diminution of luciferin concentration results only in a decrease in the value of the y-intercept, Log Ak, the two straight line plottings for two different concentrations being parallel. 7. The temperature coefficient is high, being about 4.5 for the 15–25° interval, and 3.0 for the 25–35° interval.  相似文献   

11.
1. The hydrolysis of gelatin at a constant hydrogen ion concentration follows the course of a monomolecular reaction for about one-third of the reaction. 2. If the hydrogen ion concentration is not kept constant the amount of hydrolysis in certain ranges of acidity is proportional to the square root of the time (Schütz''s rule). 3. The velocity of hydrolysis in strongly acid solution (pH less than 2.0) is directly proportional to the hydrogen ion concentration as determined by the hydrogen electrode i.e., the "activity;" it is not proportional to the hydrogen ion concentration as determined by the conductivity ratio. 4. The addition of neutral salts increases the velocity of hydrolysis and the hydrogen ion concentration (as determined by the hydrogen electrode) to approximately the same extent. 5. The velocity in strongly alkaline solutions (pH greater than 10) is directly proportional to the hydroxyl ion concentration. 6. Between pH 2.0 and pH 10.0 the rate of hydrolysis is approximately constant and very much greater than would be calculated from the hydrogen and hydroxyl ion concentration. This may be roughly accounted for by the assumption that the uncombined gelatin hydrolyzes much more rapidly than the gelatin salt.  相似文献   

12.
The above data relating to the reaction between 16 hour cultures of S. aureus and antistaphylococcus bacteriophage in nutrient broth of pH 7.6 at 36°C. and with mechanical shaking to maintain a uniform B suspension, bring out the following points: (a) B growth in P-B mixtures does not differ from growth in controls without P except in the case of a very high initial P/B ratio as noted below. There is no evidence that lytic destruction of B begins shortly after mixing P and B nor that B growth is stimulated by P, for the B growth curves in the presence of ordinary [P]''s and in controls are identical. Only at the sudden onset of the rapid lytic process does the B curve of a P-B mixture deviate from the control curve. (b) B growth is an essential conditioning factor for P formation. (c) Both B growth and P production exhibit short lags. During this time P diffuses into or becomes adsorbed to B so rapidly that by the end of the lag period only 10 to 30 per cent of the total P present is extracellular, the remainder being associated with the B. (d) During the logarithmic B growth phase, P formation is also logarithmic but proceeds at a much faster rate. That is, d P/d t is proportional to a power of d B/d t. Consequently the statement that each time a B divides a certain amount of P is formed is not correct. (e) As B growth enters the phase of positive acceleration equilibrium between the extracellular and intracellular P fractions becomes established and is maintained up to the onset of lysis, extracellular [P] representing a small constant percentage of total [P]. The distribution of P on a constant percentage basis suggests the manner in which a relatively simple chemical compound would be distributed and is not at all typical of the distribution one would expect if P were a complex organized parasite. (f) When the value of log P/B = 2.1 lysis begins. Obviously, this limiting value for any initial [B] is reached sooner the higher the initial [P]. When log P/B at the time of mixing P and B is already 2.1 or greater, there is no growth of B and lysis soon occurs. (g) While there is good evidence that lysis is brought about by the attainment of a particular [P] per B and not by a certain [P] per ml., it is not clear at this time which of the ratios intracellular P/B, extracellular P/B or total P/B is the major conditioning factor for B lysis. (h) Experimentally the maximal [P]''s of lysates made by mixing a constant initial [B] with widely varying Po''s fall within a relatively narrow range. This fact is explained by the large value of d log P/d t as compared to d log B/d t. That is, the loci of points at which log P = 2.1 + log B (maxima-lysis begins) on the curves of log P against t originating in various [Po]''s will lie at a nearly constant level above the abscissa. Because of this same relationship the maximal [P]''s of such a series will be in the reverse order of magnitude of the Po''s, i.e., the larger the Po the smaller will be the maximal [P] attained during the reaction (cf. Fig, 16). (i) The lytic destruction of B is logarithmic with time, in this respect being similar to most death rate processes. The value -d log B/d t for a particular initial [B] is constant for various initial values of [P]. There is good evidence that cells need not be growing in order to undergo lysis. (j) During B lysis a considerable percentage of the total maximal P formed is destroyed, the chief loss probably occurring in the intracellular fraction. The major portion (70 to 90 per cent) of the final P present after the completion of bacteriophagy is set free during the brief phase of bacterial dissolution. (k) When the entire process of bacteriophagy is completed the lysates are left with certain [P]''s determined by the foregone P-B reaction. The destruction of P during lysis is sufficiently regular to maintain the relationship established at the maximal [P]''s. Therefore the final [P]''s have the same points in common that were noted in "h" as applying to the maximal [P]''s. That is, they all are grouped within a narrow range of [P] values, those having been made with high Po''s being of lower titre than those made with low initial [P]''s. (1) There is a significant difference in the temperature coefficients of P and B formation. Further, the temperature coefficients of P and B destruction during lysis differ in almost the same ratio. Consequently, while all experimental evidence postulates B growth as an essential conditioning factor for P formation, the temperature coefficient data suggest that the two processes are basically separate reactions. A similar interpretation holds in the case of B dissolution and P inactivation. (m) The major events in the complete process of "bacteriophagy" are mathematically predictable. The [B] at which lysis occurs under certain standard conditions for given values of Bo and Po may be calculated from the equation: See PDF for Equation Substitution of this value for log B in the equation: See PDF for Equation gives satisfactory agreement with observed values for t (lysis). (n) The kinetic analysis of the P-B reaction predicts that the values of log Po plotted against t (lysis) for a constant Bo will give a straight line. This plot is employed in a method for the quantitative estimation of P described in an earlier paper on the basis of experimental observation alone. Its use is made more rational by the facts given above.  相似文献   

13.
14.
1. Complement fixation is obtained in every antigen-antibody reaction involving the presence or formation of a heterogeneous phase (red cells, bacteria, precipitate). 2. The physical constants of fixation (temperature coefficient, velocity, quantitative relationships between the reactants) are those commonly associated with adsorption processes, and are the same in the three types of fixation studied. 3. All the in vitro immune reactions involve an aggregation of immune-serum globulins upon the surface of the antigen. It has been shown that the "fixation" of complement is an adsorption by the aggregates so formed; whether these aggregates are visible as a flocculent precipitate (e.g., sheep serum vs. anti-serum) or concentrated as a surface film on a cellular antigen (sensitized cells; agglutinated bacteria), the reaction is fundamentally the same. 4. As yet, it is unknown whether this adsorption is determined by the physical state of the precipitate, and thus, differs only quantitatively from that by Kaolin, charcoal, normal bacteria, heat-denatured proteins, etc.; or whether the comparatively enormous avidity of these aggregates for complement is due to a specific chemical affinity.  相似文献   

15.
It has been shown that the experimental results obtained by Morgulis in a study of the decomposition of hydrogen peroxide by liver catalase at 20°C. and in the presence of an excess of a relatively high concentration of peroxide are quantitatively accounted for by the following mechanisms. 1. The rate of formation of oxygen is independent of the peroxide concentration provided this is greater than about 0.10 M. 2. The rate of decomposition of the peroxide is proportional at any time to the concentration of catalase present. 3. The catalase undergoes spontaneous monomolecular decomposition during the reaction. This inactivation is independent of the concentration of catalase and inversely proportional to the original concentration of peroxide up to 0.4 M. In very high concentrations of peroxide the inactivation rate increases. 4. The following equation can be derived from the above assumptions and has been found to fit the experiments accurately. See PDF for Equation in which x is the amount of oxygen liberated at the time t, A is the total amount of oxygen liberated (not the total amount available), and K is the inactivation constant of the enzyme.  相似文献   

16.
1. It is possible to determine by the colorimetric method the rate of production of carbon dioxide by the cardiac ganglion of Limulus. 2. Carbon dioxide formation in the cardiac ganglion was found to run parallel to the rate of heart beat for different temperatures. 3. The conclusion seems justified that the rate of cardiac rhythm of Limulus depends upon a chemical reaction in the nerve cells of the cardiac ganglion and that this reaction is associated with the production of carbon dioxide since the rate of beat and the rate of CO2 production are similarly affected by changes in temperature.  相似文献   

17.
Vitamin K1, 2-methyl-3-phytyl-1,4-naphthoquinone, is a substance found in all plant chloroplasts. It is, therefore, interesting to know whether it has any influence upon the metabolism of plants. Experiments made with the phytol-free derivatives like 2-methyl-1,4-naphthoquinone or the corresponding 3-oxy compound, phthiocol, gave the following results. These substances accelerate the respiration of Chlorella or Scenedesmus in a way similar to the action of the dinitrophenols. They inhibit photosynthesis and the compensation of respiration in the light strongly like hydroxylamine. In Scenedesmus they hinder the adaptation to the anaerobic utilization of hydrogen. If given after adaptation in amounts sufficient to stop photosynthesis they do not prevent photoreduction but rather stabilize this reaction against reversion. Their presence destroys the coupling between the reduction of carbon dioxide in the dark and the oxyhydrogen reaction in adapted algae. One can expect, therefore, that the natural vitamin K present in plants in concentrations of about 10–3 M takes part in some metabolic reaction as a catalyst or regulator.  相似文献   

18.
1. The term "coupled redox potential" is defined. 2. The system lactic ion See PDF for Equation pyruvic ion + 2H+ + 2e is shown to be reversible (when the enzyme is lactic acid dehydrogenase) and its coupled redox potential between pH 5.2 and 7.2 at 32°C. is: See PDF for Equation 3. The free energy of the reaction: lactic ion (1m) → pyruvic ion (1m) = -ΔF = –14,572. 4. The standard free energy of formation (ΔF 298) of pyruvic acid (l) is estimated at –108,127. This is merely an approximation as some necessary data are lacking. 5. The importance of coupled redox potentials as a factor in the regulation of the equilibrium of metabolites is indicated.  相似文献   

19.
1. Data are presented for the dark adaptation of four species of animals. They show that during dark adaptation the reaction time of an animal to light of constant intensity decreases at first rapidly, then slowly, until it reaches a constant minimum. 2. On the assumption that at all stages of adaptation a given response to light involves a constant photochemical effect, it is possible to describe the progress of dark adaptation by the equation of a bimolecular reaction. This supposes, therefore, that dark adaptation represents the accumulation within the sense cells of a photosensitive material formed by the chemical combination of two other substances. 3. The chemical nature of the process is further borne out by the fact that the speed of dark adaptation is affected by the temperature. The velocity constant of the bimolecular process describing dark adaptation bears in Mya a relation to the temperature such that the Arrhenius equation expresses it with considerable exactness when µ = 17,400. 4. A chemical mechanism is suggested which can account not only for the data of dark adaptation here presented, but for many other properties of the photosensory process which have already been investigated in these animals. This assumes the existence of a coupled photochemical reaction of which the secondary, "dark" reaction is catalyzed by the products of the primary photochemical reaction proper. This primary photochemical reaction itself is reversible in that its main products combine to form again the photosensitive material, whose concentration controls the behavior of the system during dark adaptation.  相似文献   

20.
1. In specimens of freshly hatched squid, Loligo pealii, nicotine acts upon the cerebral ganglia alone. 2. After 1 minute in the nicotine solution 1:500,000, the latent period for the mantle spasm is independent of the time spent in the solution. 3. The mantle spasm is conditioned by a chemical reaction, since the temperature coefficient of the process has a magnitude of about 2.8. 4. The velocity of the process which brings about the mantle spasm varies as the cube root of the concentration of the nicotine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号