首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
吊丝单竹笋期叶片特性研究   总被引:4,自引:0,他引:4  
对3种不同年龄的吊丝单竹株在不同发笋时期、不同竹冠部位的叶片比叶重、光合、呼吸性状及N、P、K含量等进行测定,结果表明:吊丝单竹在不同发笋时期、不同竹冠部位各项指标均有较大差异。比叶重发笋盛期高于初期和末期,随着竹株年龄增大而减小,随着竹冠的升高而增大;净光合速率盛期高于初期,光呼吸速率和暗呼吸速率则初期高于盛期,并且不同竹龄、不同竹冠部位之间均表现出较大的差异;N、P、K含量由发笋初期至盛期逐渐减小,N含量以1a>2a>3a,以竹冠中部最高,P、K含量则随着竹冠的升高而减小,随着竹株年龄的增大而增大。这为经营管理吊丝单竹林提供科学依据。  相似文献   

3.
Laurie E. Friday 《Oecologia》1989,80(2):272-277
Summary Utricularia vulgaris growing at Wicken Fen, England, showed rapid turnover of the trapping apparatus. New groups of leaves, each bearing many traps, were produced at a rate of 1.4–2.8 groups per day from April to September, 1987. Old leaves decayed at a comparable rate, so that individual leaves survived for less than 50 days. In July, trapping efficiency of individual bladders was greatest between 1 and 6 days of age and then declined rapidly. Very few traps more than 19 days old could capture prey and most were lost from the leaves within 32 days. The lifespan of traps was closely related to their size and position on the leaves. Because of the rapidity of changes in trap condition with age, trap age is a vital consideration in any studies of the functional ecology of U. vulgaris  相似文献   

4.
Villar R  Held AA  Merino J 《Plant physiology》1995,107(2):421-427
Dark respiration in light as well as in dark was estimated for attached leaves of an evergreen (Heteromeles arbutifolia Ait.) and a deciduous (Lepechinia fragans Greene) shrub species using an open gas-exchange system. Dark respiration in light was estimated by the Laisk method. Respiration rates in the dark were always higher than in the light, indicating that light inhibited respiration in both species. The rates of respiration in the dark were higher in the leaves of the deciduous species than in the evergreen species. However, there were no significant differences in respiration rates in light between the species. Thus, the degree of inhibition of respiration by light was greater in the deciduous species (62%) than in the evergreen species (51%). Respiration in both the light and darkness decreased with increasing leaf age. However, because respiration in the light decreased faster with leaf age than respiration in darkness, the degree of inhibition of respiration by light increased with leaf age (from 36% in the youngest leaves to 81% in the mature leaves). This suggests that the rate of dark respiration in the light is related to the rate of biosynthetic processes. Dark respiration in the light decreased with increasing light intensity. Respiration both in the light and in the dark was dependent on leaf temperature. We concluded that respiration in light and respiration in darkness are tightly coupled, with variation in respiration in darkness accounting for more than 60% of the variation in respiration in light. Care must be taken when the relation between respiration in light and respiration in darkness is studied, because the relation varies with species, leaf age, and light intensity.  相似文献   

5.
羊草不同叶龄叶片光-光合特性的初步研究   总被引:9,自引:0,他引:9  
在6月至7月,羊草叶片在充分展开后的数天之内,即最上展开叶,其净光合速率及其光强系数,以及光饱和点,近饱和点和半饱和点最高;幼龄叶和老龄叶的上述各项指标均较低,但随着光强的下降,不同叶龄叶片的净光合速率或光合的光强系数的差别均逐渐减小,光补偿点以半展开幼叶较低,而后随叶龄增长逐渐升高,羊草的壮龄叶对光的利用能力较强,在其光合生产中起主要作用,幼龄叶仅对弱光的利用能力高,老龄叶相对地较为耐阴。  相似文献   

6.
Tobacco leaves of plants with enhanced glutathione reductase activity (GR46-27, Nicotiana tabacum L. cv. Samsun) or with autoregulated senescence-induced production of cytokinins (PSAG12-IPT, N. tabacum L. cv. Wisconsin) were studied during the course of leaf development and senescence by measuring photosynthesis, chlorophyll and protein content, the antioxidants ascorbate, glutathione and α -tocopherol as well as the antioxidative enzymes ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1). The photosynthetic rate, as well as the chlorophyll and protein content, dropped with increasing leaf age after having reached a maximum at the end of the exponential growth phase. The concentrations of the water-soluble antioxidants ascorbate and glutathione fell continuously with age, whereas the concentration of the lipophilic α -tocopherol increased. The activities of the antioxidative enzymes APX, GR and SOD reached their maximum at the beginning of leaf development, but were reduced in senescing leaves. The age-dependent course of the measured leaf parameters in GR46-27 leaves was similar to the one in wild-type leaves, with the exception of an overall enhanced GR activity. In contrast, in old leaves of PSAG12-IPT plants, which possess a much higher life span, the chlorophyll and protein content, the photosynthetic rate, the antioxidant concentrations of ascorbate and glutathione as well as the activities of the antioxidative enzymes were higher than in wild-type leaves. The results show that the capacity of the antioxidative system to scavenge radicals is sufficiently balanced with the plant metabolism, and its decline with increasing age is not the cause, but a consequence of senescence and ageing in plants.  相似文献   

7.
叶龄及树冠不同部位光强对黄花梨光合速率的影响   总被引:7,自引:0,他引:7  
笔者以黄花梨为试材,研究了叶龄及树冠不同部位光强对其光合速率的影响。结果表明:黄花梨叶片在展叶后约11天即有少量光合产物输出,25天时,单叶净光合速率接近最大值;密植梨树高光合叶幕厚度约125cm左右。  相似文献   

8.
The influence of age on chloroplast structure and photosynthetic light response of Rhododendron maximum L. was studied in three different microhabitats. The three microhabitats constituted a gradient of low, intermediate, and high irradiance levels. The most dramatic change in chloroplast structure with increasing age was the proliferation of the number and size of plastoglobuli. The magnitude and age specific rate of chloroplast occlusion by plastoglobuli increased in habitats with higher irradiance. Photosynthetic responses to light differed among the age categories of leaves. Light saturated photosynthesis and quantum yield decreased as leaves aged. However, in high light environments the rate of reduction of quantum yield or light saturated photosynthetic rate was more rapid than in the low light environment. The quantity of plastoglobuli increased in association with reduced light reaction capacity. The presence and abundance of plastoglobuli in R. maximum chloroplasts and their association with reduced photosynthetic performance indicates that the photosynthetic apparatus of the R. maximum chloroplast is sensitive to photodestruction by high irradiance: commonly a winter phenomenon in these environments.  相似文献   

9.
Individual leaves of perennial ryegrass cv. Aberystwyth S23 of two leaf ages and at two levels of nitrogen fertilisation were point inoculated with Puccinia coronata f.sp. coronata in a growth chamber. In general, there was no significant difference in the lifespan of inoculated versus control leaves. However, the higher rate of nitrogen extended leaf lifespan more markedly in rusted than in control leaves. Uredospore production varied according to leaf age: colonies on juvenile leaves produced three times as many spores as those on mature leaves.  相似文献   

10.
Abstract.
  • 1 We studied within-tree variation in leaf quality of the mountain birch, Betula pubescens ssp. tortuosa, for larvae of the autumnal moth, Epirrita autumnata.
  • 2 The purpose of the study was to determine the possible occurrence of systematic differences in larval growth on short shoot leaves (i.e. leaves of the same age): among leaves facing in different compass directions, between leaves of lower and upper branches, among leaves on different positions within a branch and among leaves of different sizes within a short shoot. We also measured larval growth between short shoot and long shoot leaves (i.e. between leaves of different age).
  • 3 The larvae grew best on leaves on the north side of trees and most poorly on south side leaves, the east and west sides being intermediate. Leaves from the upper branches supported larval growth better than leaves from the lower ones. The larvae grew better on the smallest leaf of each short shoot and were able to utilize it more efficiently than the two larger leaves. Short shoot leaves from the basal and middle parts of the upper branches of the trees were of better quality for the larvae than short shoot leaves from the tip part of the branches. The larval growth rate did not differ between short shoot and long shoot leaves. In general, within-tree variation in the larval growth rate was lower than variation among different trees.
  • 4 Damage to leaves can decrease leaf quality for herbivores in the same year (rapidly inducible responses) or the following year(s) (delayed inducible responses). Our results show that systematic within-tree variation in larval growth can be as great as the effects of rapidly inducible responses and that variation among individual trees can be as great as the mean effects of delayed inducible responses.
  相似文献   

11.
利用会同杉木林25年的定位测定的基础数据,探讨了不同林龄杉木(Cunninghamia lanceolata(lamb) Hook)枝叶凋落前的养分转移特征,为人工林经营管理提供科学依据。结果表明:杉木枝叶凋落前年均养分转移量为3.22—31.89 kg hm~(-2) a~(-1),其中,叶占71.31%—94.41%,枝占5.59%—28.69%。枝的养分转移量随林龄增加而增加。林分20年生以前,叶的养分转移量呈上升趋势,20年生以后,呈下降趋势。枝的养分转移率为20.97%—22.59%,叶是22.98%—26.06%,枝和叶的养分转移率都随林龄增加而增大。各林龄段的枝的养分转移率差异不显著(P0.05),叶的养分转移率除1—7年生与其他林龄段的差异显著(P0.05),其余各林龄段之间差异不显著(P0.05)。转移的元素量中,N和K占83.75%—84.25%,P、Ca、Mg占15.75%—16.25%。N、P、K、Ca、Mg的转移率分别为24.59%—34.53%,36.36%—46.64%,42.86%—51.27%,3.68%—7.35%,3.67%—9.56%。养分转移率主要受枝叶凋落前、后的养分浓度差值与枝叶凋落前的养分浓度控制,与凋落物量无关。养分的转移量不仅受枝叶凋落前、后的养分浓度差值的影响外,更多地取决于凋落物量,而且与杉木生长发育特征有很大的关联。  相似文献   

12.
The effect of leaf age on photosynthetic capacity, a critical parameter in the theory of optimal leaf longevity, was studied for two tropical pioneer tree species, Cecropia longipes and Urera caracasana, in a seasonally dry forest in Panama. These species continuously produce short-lived leaves (74 and 93 d, respectively) during the rainy season (May-December) on orthotropic branches. However, they differ in leaf production rate, maximum number of leaves per branch, light environment experienced by the leaves, leaf mass per unit area, and nitrogen content. Light-saturated photosynthetic rates for marked leaves of known ages (±1 wk) were measured with two contrasting schemes (repeated measurements vs. chronosequence within branch), which overall produced similar results. In both species, photosynthetic rates and nitrogen use efficiency were negatively correlated with leaf age and positively correlated with light availability. Photosynthetic rates declined faster with leaf age in Cecropia than in Urera as predicted by the theory. The rate of decline was faster for leaves on branches with faster leaf turnover rates. Nitrogen per unit leaf area decreased with leaf age only for Urera. Leaf mass per unit area increased with leaf age, either partly (in Cecropia) or entirely (in Urera) due to ash accumulation.  相似文献   

13.
14.
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.  相似文献   

15.
Wrinkling aphid of pistachio leaf, Forda hirsuta Mordv. (Hem.:Pemphigidae) is one of the pests of pistachio trees. This aphid caused the shrinkage, thickening, and changing the color of the pistachio leaves. Since insect feeds from leave edges, the thick and rolled upward wrinkles were formed, which its green color turned into red. Therefore, its economical damages are out of direct feeding from plant extraction, twisting pistachio leaves, and the decrease of photosynthesis. In this research two orchards and 10 trees that each of them were selected in Rafsanjan region and 58 fundatrix galls, 120 nymphal galls were marked and the demographic parameters for apterus parthenogenesis female of this aphid were calculated via daily observations. The results indicated that intrinsic rates of increase (r) for 1, 2 and 3 generations were 0.01, 0.0638 and 0.0575 femal/femal/days respectively, Doubling time (DT) were 69.31, 10.52 and 12.04 days, respectively, net fecundity rates were 1.71, 11.5 and 7.37 femal/femal/days, respectively, Net fertility rates were 1.11, 8.87 and 5.01 days, respectively, and mean generation times (Tc) were calculated to be 31.5, 32.2 and 31.87 days, respectively. Other reproductive parameters such as gross hatch rate, gross fecundity rate, gross fertility rate, mean age gross fecundity and fertility, mean age net fecundity and fertility, mean age hatch, finite rate of increase (lambda), intrinsic birth rate (b) intrinsic death rate (d) and daily reproductive rate were also calculated. The results revealed that population parameters especially r in the first and second generations were lowest and highest, respectively and mean longevity of fundatrix was 30 days and the born nymphs made separate galls in the edge of pistachio leaves.  相似文献   

16.
Summary Chloroplast differentiation in relation to increasing leaf age has been investigated in maize plants exposed to continuous illumination. In the young leaves the proplastids differentiate into chloroplasts containing well organized grana as well as prolamellar bodies. In the older leaves, while plastids differentiate, the prolamellar bodies are no longer detectable. Chloroplast ability to build up prolamellar bodies does not seems so much a light dependent process as it is affected by cell differentiation rate.Supported by a grant of C.N.R.  相似文献   

17.
n apparatus is described in which the rate of apparent photosynthesisof single attached or detached grass leaves was determined bymeasuring with an infra-red gas analyser the uptake of carbondioxide from a stream of air passed over the leaves. In one experiment the apparatus was used to determine the apparentphotosynthesis at one time of the three youngest leaves removedfrom a tiller of tall fescue plants grown in the field. Resultsshowed that each older leaf had a lower rate of apparent photosynthesisthan its successor. To determine the real effect of age of theleaf without any possible interaction with position of the leafor an after-effect of environment, measurements of apparentphotosynthesis were made in two further experiments on leavesattached to the main stem on plants grown in controlled environments.Results were obtained from samples of the fifth leaf of increasingage from full expansion. These showed a progressive declinein apparent photosynthesis with increasing age: in one experimentthis was preceded by a small initial rise after complete leafexpansion. There were no marked changes in the weight of theleaf as it aged and, in consequence, the form of the resultswere similar when expressed on either a leaf area or dry weightbasis.  相似文献   

18.
BACKGROUND AND AIMS: In a leaf canopy, there is a turnover of leaves; i.e. they are produced, senesce and fall. These processes determine the amount of leaf area in the canopy, which in turn determines canopy photosynthesis. The turnover rate of leaves is affected by environmental factors and is different among species. This mini-review discusses factors responsible for leaf dynamics in plant canopies, focusing on the role of nitrogen. SCOPE: Leaf production is supported by canopy photosynthesis that is determined by distribution of light and leaf nitrogen. Leaf nitrogen determines photosynthetic capacity. Nitrogen taken up from roots is allocated to new leaves. When leaves age or their light availability is lowered, part of the leaf nitrogen is resorbed. Resorbed nitrogen is re-utilized in new organs and the rest is lost with dead leaves. The sink-source balance is important in the regulation of leaf senescence. Several models have been proposed to predict response to environmental changes. A mathematical model that incorporated nitrogen use for photosynthesis explained well the variations in leaf lifespan within and between species. CONCLUSION: When leaf turnover is at a steady state, the ratio of biomass production to nitrogen uptake is equal to the ratio of litter fall to nitrogen loss, which is an inverse of the nitrogen concentration in dead leaves. Thus nitrogen concentration in dead leaves (nitrogen resorption proficiency) and nitrogen availability in the soil determine the rate of photosynthesis in the canopy. Dynamics of leaves are regulated so as to maximize carbon gain and resource-use efficiency of the plant.  相似文献   

19.
The effect of leaf age on K (86Rb) influx into tomato (Lycopersiconesculentum Mill.) leaf lamina slices was determined for leaves5, 9 and 13 counting acropetally. Potassium influx rates expressedon a leaf fresh weight basis declined rapidly during leaf elongationat external KCI concentrations between 0.5 and 20.0 mM. In fullyexpanded leaves, K influx rates declined more slowly with age.The onset of senescence in mature leaves did not result in alarge loss in K uptake capability. Leaf position on the shootaxis and the stage of whole plant development had little influenceon K influx into leaf cells. It is suggested that the rapiddecrease in K influx in growing leaves is related to a dilutionin the concentration of K transporter sites resulting from anincrease in cell volume and weight. Lycopersicon esculentum Mill, tomato, free space, potassium, influx rate, ion uptake, leaf slices, leaf age leaf ontogeny  相似文献   

20.
Abstract: Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. In order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号