首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiochemical inactivation of invertase by beta radiation from the radioactive products in equilibrium with radium emanation can be explained quantitatively on the same basis as that of trypsin and pepsin previously reported; namely, the rate of change in the logarithm of the concentration of the active enzyme with respect to the variable, W, is constant, under the conditions of irradiation described, when the volume of solution exposed is constant. When, within the limits stated in this paper, this volume (V) is varied, the rate of radiochemical change is inversely proportional to V; i.e., See PDF for Equation  相似文献   

2.
1. In certain cases the rate of digestion of proteins by pepsin is not proportional to the total concentration of pepsin. 2. It is suggested that this is due to the fact that the enzyme in solution is in equilibrium with another substance (called peptone for convenience) and that the equilibrium is quantitatively expressed by the law of mass action, according to the following equation. See PDF for Equation It is assumed that only the uncombined pepsin affects the hydrolysis of the protein. 3. The hypothesis has been put in the form of a differential equation and found to agree quantitatively with the experimental results when the concentration of pepsin, peptone, or both is varied. 4. Pepsin inactivated with alkali enters the equilibrium to the same extent as active pepsin. 5. Under certain conditions (concentration of peptone large with respect to pepsin, and concentration of substrate relatively constant) the relative change in the amount of active pepsin is inversely proportional to the concentration of peptone and the equation simplifies to Schütz''s rule. 6. An integral equation is obtained which holds for the entire course of the digestion (except for the first few minutes) with varying enzyme concentration. This equation is identical in form with the one derived by Arrhenius for the action of ammonia on ethyl acetate. 7. It is pointed out that there are many analogies between the action of pepsin on albumin solutions and the action of toxins on an organism.  相似文献   

3.
1. A quantitative method for the determination of pepsin is described depending on the change in conductivity of a digesting egg albumin solution. 2. The combination of pepsin with an insoluble substrate has been followed by this method. 3. The amount of pepsin removed from solution by a given weight of substrate is independent of the size of the particles of the substrate. 4. There is an optimum zone of hydrogen ion concentration for the combination of enzyme and substrate corresponding to the optimum for digestion. 5. It is suggested that the pepsin combines largely or entirely with the ionized protein.  相似文献   

4.
The experiments described above show that the rate of digestion and the conductivity of protein solutions are very closely parallel. If the isoelectric point of a protein is at a lower hydrogen ion concentration than that of another, the conductivity and also the rate of digestion of the first protein extends further to the alkaline side. The optimum hydrogen ion concentration for the rate of digestion and the degree of ionization (conductivity) of gelatin solutions is the same, and the curves for the ionization and rate of digestion as plotted against the pH are nearly parallel throughout. The addition of a salt with the same anion as the acid to a solution of protein already containing the optimum amount of the acid has the same depressing effect on the digestion as has the addition of the equivalent amount of acid. These facts are in quantitative agreement with the hypothesis that the determining factor in the digestion of proteins by pepsin is the amount of ionized protein present in the solution. It was shown in a previous paper that this would also account for the peculiar relation between the rate of digestion and the concentration of protein. The amount of ionized protein in the solution depends on the amount of salt formed between the protein (a weak base) and the acid. This quantity, in turn, according to the hydrolysis theory of the salts of weak bases and strong acids, is a function of the hydrogen ion concentration, up to the point at which all the protein is combined with the acid as a salt. This point is the optimum hydrogen ion concentration for digestion, since the solution now contains the maximum concentration of protein ions. The hydrogen ion concentration in this range therefore is merely a convenient indicator of the amount of ionized protein present in the solution and takes no active part in the hydrolysis. After sufficient acid has been added to combine with all the protein, i.e. at pH of about 2.0, the further addition of acid serves to depress the ionization of the protein salt by increasing the concentration of the common anion. The hydrogen ion concentration is, therefore, no longer an indicator of the amount of ionized protein present, since this quantity is now determined by the anion concentration. Hence on the acid side of the optimum the addition of the same concentration of anion should have the same influence on the rate of digestion irrespective of whether it is combined with hydrogen or some other ion (provided, of course, that there is no other secondary effect of the other ion). The proposed mechanism is very similar to that suggested by Stieglitz and his coworkers for the hydrolysis of the imido esters. Pekelharing and Ringer have shown that pure pepsin in acid solution is always negatively charged; i.e., it is an anion. The experiments described above show further that it behaves just as would be expected of any anion in the presence of a salt containing the protein ion as the cation and as has been shown by Loeb to be the case with inorganic anions. Nothing has been said in regard to the quantitative agreement between the increasing amounts of ionized protein found in the solution (as shown by the conductivity values) and the amount predicted by the hydrolysis theory of the formation of salts of weak bases and strong acids. There is little doubt that the values are in qualitative agreement with such a theory. In order to make a quantitative comparison, however, it would be necessary to know the ionization constant of the protein and of the protein salt and also the number of hydroxyl (or amino) groups in the protein molecule as well as the molecular weight of the protein. Since these values are not known with any degree of certainty there appears to be no value at present in attempting to apply the hydrolysis equations to the data obtained. It it clear that the hypothesis as outlined above for the hydrolysis of proteins by pepsin cannot be extended directly to enzymes in general, since in many cases the substrate is not known to exist in an ionized condition at all. It is possible, however, that ionization is really present or that the equilibrium instead of being ionic is between two tautomeric forms of the substrate, only one of which is attacked by the enzyme. Furthermore, it is clear that even in the case of proteins there are difficulties in the way since the pepsin obtained from young animals, or a similar enzyme preparation from yeast or other microorganisms, is said to have a different optimum hydrogen ion concentration than that found for the pepsin used in these experiments. The activity of these enzyme preparations therefore would not be found to depend on the ionization of the protein. It is possible of course that the enzyme preparations mentioned may contain several proteolytic enzymes and that the action observed is a combination of the action of several enzymes. Dernby has shown that this is a very probable explanation of the action of the autolytic enzymes. The optimum hydrogen ion concentration for the activity of the pepsin used in these experiments agrees very closely with that found by Ringer for pepsin prepared by him directly from gastric juice and very carefully purified. Ringer''s pepsin probably represents as pure an enzyme preparation as it is possible to prepare. There is every reason to suppose therefore that the enzyme used in this work was not a mixture of several enzymes.  相似文献   

5.
1. Charcoal removes trypsin from solution. The amount removed depends on the order in which the solutions are mixed. The reaction is not reversible and is almost independent of the pH of the solution. 2. Charcoal which has been previously treated with gelatin does not remove trypsin from solution. 3. The reaction is not analogous either to the reaction between trypsin and the inhibiting substance of serum or to the reaction between solid protein and either pepsin or trypsin.  相似文献   

6.
In the presence of iodine at pH 5.0–6.0 a solution of pepsin absorbs iodine and the specific proteolytic activity of the solution decreases. The activity is less than 1 per cent of the original activity when the number of iodine atoms per mol of pepsin is 35–40. If the pH is 4.5 or less, iodine reacts very slowly and there is a correspondingly slower loss in activity. Glycyl tyrosine reacts with iodine in a manner similar to pepsin. Experiments were performed to determine the extent to which oxidation of pepsin by iodine occurs during iodination, and if such oxidation were responsible for the loss in enzymatic activity. Although the results were not absolutely decisive, there seems to be no appreciable oxidation taking place during iodination and no relationship between the slight oxidation and loss in peptic activity. From a dialyzed preparation of completely iodinated pepsin which was inactive and contained 13.4 per cent bound iodine, 82 per cent of the iodine was obtained in a solution which analyzed as a solution of diiodo-tyrosine. Because of the presence of a material which contained no iodine and prevented quantitative crystallization, only 53 per cent of the iodine containing substance could be crystallized. This 53 per cent was, however, identified as diiodo-tyrosine. The part of the titration curve which in pepsin and most proteins represents the phenolic group of tyrosine was, in the curve for iodinated pepsin, shifted toward the acid region as expected. From these results, it appears that the loss in proteolytic activity of pepsin, when treated with iodine under the specified conditions, is due to the reaction of the iodine with the tyrosine in pepsin.  相似文献   

7.
节丛孢属真菌抗反刍动物消化菌株的体外筛选*   总被引:2,自引:0,他引:2  
利用食线虫真菌对动物寄生线虫病进行生物防治是寄生虫学当今的研究热点之一。获得能够通过动物消化的食线虫菌株是取得成功的前提。本采用模拟反刍动物瘤胃和真胃的消化道作用,对84株节丛孢属的食线虫真菌进行了体外抗消化筛选。结果表明:共有23株通过了24h瘤胃液的处理,通过率为27.38%;16株同时还通过了4h盐酸-胃蛋白酶的处理,通过率为19.04%。  相似文献   

8.
Data are presented which indicate that variation in temperature is associated with only slight variation in the speed of the radiochemical inactivation of pepsin in dilute solution.  相似文献   

9.
Amylase in solution is inactivated by the radiations from a mercury arc in quartz, in a manner similar to that previously reported for pepsin. The reaction was followed to a point where more than 88 per cent change had taken place, the course being that of mono-molecular radiochemical change. Apparently, this reaction is due to the influence of ultra-violet radiation alone.  相似文献   

10.
Estimation of intestinal unstirred layer thickness usually involves inducing transmural potential difference changes by altering the content of the solution used to perfuse the small intestine. Osmotically active solutes, such as mannitol, when added to the luminal solution diffuse across the unstirred water layer (UWL) and induce osmotically dependent changes in potential difference. As an alternative procedure, the sodium ion in the luminal fluid can be replaced by another ion. As the sodium ion diffuses out of the UWL, the change in concentration next to the intestinal membrane alters the transmural potential difference. In both cases, UWL thickness is calculated from the time course of the potential difference changes, using a solution to the diffusion equation. The diffusion equation solution which allows the calculation of intestinal unstirred layer thickness was examined by simulation, using the method of numerical solutions. This process readily allows examination of the time course of diffusion under various imposed circumstances. The existing model for diffusion across the unstirred layer is based on auxiliary conditions which are unlikely to be fulfilled in the same intestine. The present simulation additionally incorporated the effects of membrane permeability, fluid absorption and less than instantaneous bulk phase concentration change. Simulation indicated that changes within the physiologically relevant range in the chosen auxiliary conditions (with the real unstirred layer length kept constant) can alter estimates of the apparent half-time. Consequently, changes in parameters unassociated with the unstirred layer would be misconstrued as alterations in unstirred layer thickness.  相似文献   

11.
1. Experiments are described in which it was observed that the yield of protein that can be synthesized by pepsin from a given peptic digest is highest when the hydrolyzing action of the pepsin is stopped as soon as all the protein has disappeared from the solution; and that the longer the digest is permitted to contain active enzyme the more the yield diminishes. 2. Exposure of the digest to a hydrogen ion concentration of pH 1.6 in the absence of active enzyme, does not cause a diminution in the amount of protein which can be synthesized from that digest. 3. Synthesis can be effected also in concentrated solutions of isolated fractions of a peptic digest, i.e. of proteose and of peptone. The yields are approximately the same as in similar concentrations of the whole digest, though the proteins so synthesized differ in some respects from those obtained from the whole digest. 4. The cessation of synthesis in any one digest is due to the attainment of equilibrium and not to the complete utilization of available synthesizeable material. The amount of the equilibrium yield, on the other hand, is dependent on the amount of synthesizeable material in the digest. 5. These observations are taken to show that the synthesizeability of a given mixture of protein cleavage products by pepsin depends upon its possession of a special complex in these products. This complex appears as a result of the primary hydrolysis of the protein molecule by pepsin and is decomposed in the slow secondary hydrolysis which ensues as digestion is prolonged.  相似文献   

12.
1. In three previous publications it had been shown that electrolytes influence the rate of diffusion of pure water through a collodion membrane into a solution in three different ways, which can be understood on the assumption of an electrification of the water or the watery phase at the boundary of the membrane; namely, (a) While the watery phase in contact with collodion is generally positively electrified, it happens that, when the membrane has received a treatment with a protein, the presence of hydrogen ions and of simple cations with a valency of three or above (beyond a certain concentration) causes the watery phase of the double layer at the boundary of membrane and solution to be negatively charged. (b) When pure water is separated from a solution by a collodion membrane, the initial rate of diffusion of water into a solution is accelerated by the ion with the opposite sign of charge and retarded by the ion with the same sign of charge as that of the water, both effects increasing with the valency of the ion and a second constitutional quantity of the ion which is still to be defined. (c) The relative influence of the oppositely charged ions, mentioned in (b), is not the same for all concentrations of electrolytes. For lower concentrations the influence of that ion usually prevails which has the opposite sign of charge from that of the watery phase of the double layer; while in higher concentrations the influence of that ion begins to prevail which has the same sign of charge as that of the watery phase of the double layer. For a number of solutions the turning point lies at a molecular concentration of about M/256 or M/512. In concentrations of M/8 or above the influence of the electrical charges of ions mentioned in (b) or (c) seems to become less noticeable or to disappear entirely. 2. It is shown in this paper that in electrical endosmose through a collodion membrane the influence of electrolytes on the rate of transport of liquids is the same as in free osmosis. Since the influence of electrolytes on the rate of transport in electrical endosmose must be ascribed to their influence on the quantity of electrical charge on the unit area of the membrane, we must conclude that the same explanation holds for the influence of electrolytes on the rate of transport of water into a solution through a collodion membrane in the case of free osmosis. 3. We may, therefore, conclude, that when pure water is separated from a solution of an electrolyte by a collodion membrane, the rate of diffusion of water into the solution by free osmosis is accelerated by the ion with the opposite sign of charge as that of the watery phase of the double layer, because this ion increases the quantity of charge on the unit area on the solution side of the membrane; and that the rate of diffusion of water is retarded by the ion with the same sign of charge as that of the watery phase for the reason that this ion diminishes the charge on the solution side of the membrane. When, therefore, the ions of an electrolyte raise the charge on the unit area of the membrane on the solution side above that on the side of pure water, a flow of the oppositely charged liquid must occur through the interstices of the membrane from the side of the water to the side of the solution (positive osmosis). When, however, the ions of an electrolyte lower the charge on the unit area of the solution side of the membrane below that on the pure water side of the membrane, liquid will diffuse from the solution into the pure water (negative osmosis). 4. We must, furthermore, conclude that in lower concentrations of many electrolytes the density of electrification of the double layer increases with an increase in concentration, while in higher concentrations of the same electrolytes it decreases with an increase in concentration. The turning point lies for a number of electrolytes at a molecular concentration of about M/512 or M/256. This explains why in lower concentrations of electrolytes the rate of diffusion of water through a collodion membrane from pure water into solution rises at first rapidly with an increase in concentration while beyond a certain concentration (which in a number of electrolytes is M/512 or M/256) the rate of diffusion of water diminishes with a further increase in concentration.  相似文献   

13.
Some of the factors affecting penetration in living cells may be advantageously studied in models in which the organic salts KG and NaG diffuse from an aqueous solution A, through a non-aqueous layer B (representing the protoplasmic surface) into an aqueous solution C (representing the sap and hence called artificial sap) where they react with CO2 to form KHCO3 and NaHCO3. Their relative proportions in C depend chiefly on the partition coefficients and on the diffusion constants in the non-aqueous layer. But the ratio is also affected by other variables, among which are the following: 1. Temperature, affecting diffusion constants and partition coefficients and altering the thickness of the unstirred layers by changing viscosity. 2. Viscosity (especially in the non-aqueous layers) which depends on temperature and the presence of solutes. 3. Rate of stirring, which affects the thickness of the unstirred layers and the transport of electrolyte in those that are stirred. 4. Shape and surface area of the non-aqueous layer. 5. Surface forces. 6. Reactions occurring at the outer surface such as loss of water by the electrolyte or its molecular association in the non-aqueous phase. The reverse processes will occur at the inner surface and here also combinations with acids or other substances in the "artificial sap" may occur. 7. Outward diffusion from the artificial sap. The outward movement of KHCO3 and NaHCO3 is small compared with the inward movement of KG and NaG when the concentrations are equal. This is because the partition coefficients3 of the bicarbonates are very low as compared with those of NaG and KG. Since CO2 and HCO3 - diffuse into A and combine with KG and NaG the inward movement of potassium and sodium falls off in proportion as the concentration of KG and NaG is lessened. 8. Movement of water into the non-aqueous phase and into the artificial sap. This may have a higher temperature coefficient than the penetration of electrolytes. 9. Variation of the partition coefficients with concentration and pH. Many of these variables may occur in living cells. (It happens that the range of variation in the ratio of potassium to sodium in the models resembles that found in Valonia.)  相似文献   

14.
1. Pepsin in solution at 38°C. is most stable at a hydrogen ion concentration of about 10–5 (pH 5.0). 2. Increasing the hydrogen ion concentration above pH 5.0 causes a slow increase in the rate of destruction of pepsin. 3. Decreasing the hydrogen ion concentration below pH 5.0 causes a very rapid increase in the rate of destruction of the enzyme. 4. Neither the purity of the enzyme solution nor the anion of the acid used has any marked effect on the rate of destruction or on the zone of hydrogen ion concentration in which the enzyme is most stable. 5. The existence of an optimum range of hydrogen ion concentration for the digestion of proteins by pepsin cannot be explained by the destruction of the enzyme by either too weak or too strong acid.  相似文献   

15.
Winter , Dorothy M. (Iowa State U., Ames.) The development of the seed of Abutilon theophrasti. II. Seat coat. Amer. Jour. Bot. 47(3) : 157—162. Illus. 1960.–The integuments of Abutilon theophrasti Medic. undergo a rapid increase in size, predominantly by anticlinal cell divisions during the first 3 days after fertilization. Within 7 days, the outer epidermis of the inner integument becomes thick walled. At maturity this compact, lignified, and cutinized palisade layer accounts for more than half the thickness of the seed coat. During early growth, the palisade cells form a continuous layer in the micropylar region. In the chalazal region the palisade layer is discontinuous in a slit-shaped region, 60 × 740 microns. The shape of this discontinuity constitutes a major difference between dormant-seeded Abutilon and non-dormant Gossypium seeds. Exterior to the palisade layer is the outer integument which consists of a small-celled layer and a large-celled layer sparsely covered with unicellular, lignified hairs. Interior to the palisade is the thick mesophyll of the inner integument which is largely digested during seed growth and leaves only 2 pigmented cell layers in most regions at maturity. The inner epidermis is small-celled, pigmented and cutinized and adheres tightly to the endosperm. Seed coat impermeability increases with seed maturity. Even immature seeds will germinate, if scarified, indicating a lack of embryo dormancy.  相似文献   

16.
To imitate cells which have ceased to grow we have made models in which artificial sap is separated from the external solution by a non-aqueous layer (representing the protoplasm). A stream of CO2 is bubbled through the artificial sap to imitate its production by the living cell. Potassium passes from the external solution through the non-aqueous layer into the artificial sap and there reacts with CO2 to form KHCO3: its rate of entrance depends on the supply of CO2. Hence the increase of volume depends on the supply of CO2 (as is probably true of the living cell). By regulating the supply of CO2 and the osmotic pressure we are able to keep the volume and composition of the artificial sap approximately constant while maintaining a higher concentration of potassium than in the external solution. In these respects the model resembles certain mature cells which have ceased to grow.  相似文献   

17.
1. At equal hydrogen ion concentration the rate of pepsin digestion of gelatin, egg albumin, blood albumin, casein, and edestin is the same in solutions of hydrochloric, nitric, sulfuric, oxalic, citric, and phosphoric acids. Acetic acid diminishes the rate of digestion of all the proteins except gelatin. 2. There is no evidence of antagonistic salt action in the effect of acids on the pepsin digestion of proteins. 3. The state of aggregation of the protein, i.e. whether in solution or not, and the viscosity of the solution have no marked influence on the rate of digestion of the protein.  相似文献   

18.
1. No destruction of pepsin by heat is demonstrable at pH 1.6 until a temperature of 40°C. is exceeded. 2. The influence of the backward reaction in peptic hydrolysis is shown in the diminishing rate at which increasing concentrations of protein are hydrolyzed. 3. The backward reaction causes the optimum for the hydrolysis of higher concentrations of protein to be attained at a lower temperature than with more dilute solutions. 4. The proteose and peptone associated with commercial pepsin retard hydrolysis in the same sense as the products due to the action of the enzyme.  相似文献   

19.
Crystalline proteins, such as edestin or melon globulin, remove pepsin from solution. The pepsin protein is taken up as such and the quantity of protein taken up by the foreign protein is just equivalent to the peptic activity found in the complex. The formation of the complex depends on the pH and is at a maximum at pH 4.0. An insoluble complex is formed and precipitates when pepsin and edestin solutions are mixed and the maximum precipitation is also at pH 4.0. The composition of the precipitate varies with the relative quantity of pepsin and edestin. It contains a maximum quantity of pepsin when the ratio of pepsin to edestin is about 2 to 1. This complex may consist of 75 per cent pepsin and have three-quarters of the activity of crystalline pepsin itself. The pepsin may be extracted from the complex by washing with cold N/4 sulfuric acid. If the complex is dissolved in acid solution at about pH 2.0 the foreign protein is rapidly digested and the pepsin protein is left and may be isolated. The pepsin protein may be identified by its tyrosine plus tryptophane content, basic nitrogen content, crystalline form and specific activity.  相似文献   

20.
鹤山南亚热带草坡生态系统的太阳辐射能环境   总被引:4,自引:1,他引:3  
本文以鹤山丘陵综合试验站草坡为研究对象,分析了鹤山南亚热带草坡多年的辐射能环境.揭示了辐射与环境的关系,主要结果如下:1.全年抵达草坡的太阳总辐射约4775.2MJm-2a-1,其中直接辐射为3134.1MJm-2a-1,散射辐射为1441.1MJm-2a-1.它们受太阳高度角、云量、大气透明系数和大气光学特性的影响较大.2.太阳总辐射、直射的月变化呈双峰曲线,5月和8月为峰值,2月和6月为谷值.3.全年草坡的反射辐射量为822.5MJm-2a-1.群落的年均反射率为17.2%,其月变化因入射光特性和群落的发育状况的不同而变化.4.草坡的净辐射力2915.6MJm-2a-1,占总辐射的61.1%.其最大值出现在5月,为380.2MJm-2a-1,最低值出现在2月,为129.3MJm-2a-1,7-9月比较稳定且值相对较高.5.群落发育成熟后,其对太阳辐射的截获能力很强.其透射率仅17.2%,其冠层截获率为65.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号