首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
On an inclined glass plate the slug Agriolimax orients and creeps upward or downward. The angle of orientation on the plane (θ) is proportional to the logarithm of the component of gravity in the creeping plane. The coefficient of variability of the measured values of (θ) decreases linearly as the logarithm at the gravity component in the creeping plane increases. The cosine of the angle of orientation decreases almost directly in proportion to the sine of the angle of inclination of the creeping plane to the horizontal, as previously found for young rats (Crozier and Pincus). But a more satisfactory formulation for the present case shows that the sine of the angle of orientation (θ) decreases in direct proportion to the increase of the reciprocal of the sine of the angle of inclination of the creeping plane. This formulation is derived from the theory that the geotropic orientation is limited by the threshold difference between the pull of the body mass on the mutually inclined longitudinal muscles at the anterior end of the slug.  相似文献   

2.
On an inclined surface the fiddler crab Uca pugnax, during sidewise progression, orients upward through an angle θ on the surface. The extent of negatively geotropic orientation (θ) is a rectilinear function of sin α, where α is the inclination of the surface to the horizontal. This equation differs from that describing the geotropic orientation of various other animals. The difference is traced to the fact that from an initial position with the transverse axis of the body horizontal the crab is required to turn upward to an extent such that the vertical line from its center of gravity pierces the inclined surface within the base of support provided by the legs. This leads to the equation sec θ/tan α = const., which is obeyed within the limits of precision of the measurements. This type of control of geotropic orientation represents an extension of the "muscle tension theory," and is in no sense in conflict with this view. The assumptions underlying the analytical expression connecting θ and α are verified by the asymmetry in the orientation of male fiddlers, which is shown to be due to the presence of the enlarged chela and which disappears when the claws are removed.  相似文献   

3.
The rate of upward creeping in negatively geotropic rats aged 13 to 14 days is a function of the gravitational stimulus. The rate of upward movement on the creeping plane, like the angle of orientation, is directly proportional to the logarithm of the gravity component. The variability in the speed of creeping decreases in proportion to the logarithm of the gravitational effect. When weights are attached to the animals'' tails the rate of upward creeping varies almost directly as the logarithm of the attached weight, and the speed of creeping is still proportional to the angle of upward orientation.  相似文献   

4.
Upon a surface inclined at angle α Asterina gibbosa orients upward during negatively geotropic creeping until the average angle (θ) of the path is such that Δ sin θ/Δ sin α = const. This is true also in positively geotropic movement. The direction of orientation may be temporarily reversed by mechanical disturbance. The variation of θ is greater at low slopes. Tests with directed impressed pulls, due to an attached cork float, show that the pull upon the tube feet is of primary consequence for the determination of θ. When the component of gravitational pull in the direction of movement reaches a fraction of the total pull which is proportional to the gravitational vector parallel to the surface, the laterally acting component is ineffective. On this basis, it follows that Δ sin θ/Δ sin α = const.  相似文献   

5.
Rotation of an inclined surface on which Helix is creeping straight upward, such that the axis of the animal is turned at a right angle to its previous position, but in the same plane, leads to negatively geotropic orientation after a measurable latent period or reaction time. The duration of the latent period is a function of the slope of the surface. The magnitude of the standard deviation of the mean latent period is directly proportional to the mean latent period itself, so that the relative variability of response is constant. The dependence of reaction time upon extent of displacement from symmetrical orientation in the gravitational field is found also by tilting the supporting surface, without rotation in the animal''s own plane. On slopes up to 55°, the relation between latent period and the sine of the slope is hyperbolic; above this inclination, the latent period sharply declines. This change in the curve is not affected by the attachment of moderate loads to the snail''s shell (up to 1/3 of its own mass), and is probably a consequence of loss of passive stable equilibrium when rotated. When added loads do not too greatly extend the snail''s anterior musculature, the latent period for the geotropic reaction is decreased, and, proportionately, its σ. These facts are discussed from the standpoint that geotropic excitation in these gasteropods is due to impressed muscle-tensions.  相似文献   

6.
The creeping of the beetle Tetraopes tetraopthalmus during negatively geotropic orientation shows the angles of orientation (θ) on a surface inclined at α° to the horizontal to be proportional to sin α. The direction of orientation easily suffers temporary reversal to positive as result of handling. Mechanical stability during upward progression should be just possible when K 1 cot α = K 2 sin θ + K 3 cos θ, the weight of the body being supported on the tripod formed by the legs on either side and by the posterior tip of the abdomen. Lack of this stability produces tensions on the legs through (1) the bilaterally distributed pull of the body mass on the legs, and (2) the torque on the legs due to the weight of the abdomen. The downward gravitational displacement of the tip of the abdomen causes K 2 and K 3 in the preceding formula to be functions of α. These relations have been tested in detail by shifting the location of the center of gravity, by attaching additional masses anteriorly and posteriorly, and by decreasing the total load through amputation of the abdomen; the latter operation changes the conditions for stability. Different formulæ are thus obtained (cf. earlier papers) for the orientation of animals in which the mechanics of progression and the method of support of the body weight on an inclined surface are not the same. This demonstrates in a direct way that the respective empirical equations cannot be regarded as accidents. The results are in essence the same as that already obtained with young mammals. The diversity of equations required for the physically unlike cases merely strengthens the conception of geotropic orientation as limited by the tensions applied to the musculature of the body (caterpillars, slugs) or of appendages (beetles, and certain other forms) when the body is supported upon an inclined surface, since equations respectively pertaining to the several instances, and satisfactorily describing the observations, are deduced on this basis.  相似文献   

7.
Body mechanics in the nematode Caenorhabditis elegans are central to both mechanosensation and locomotion. Previous work revealed that the mechanics of the outer shell, rather than internal hydrostatic pressure, dominates stiffness. This shell is comprised of the cuticle and the body wall muscles, either of which could contribute to the body mechanics. Here, we tested the hypothesis that the muscles are an important contributor by modulating muscle tone using optogenetic and pharmacological tools, and measuring animal stiffness using piezoresistive microcantilevers. As a proxy for muscle tone, we measured changes in animal length under the same treatments. We found that treatments that induce muscle contraction generally resulted in body shortening and stiffening. Conversely, methods to relax the muscles more modestly increased length and decreased stiffness. The results support the idea that body wall muscle activation contributes significantly to and can modulate C. elegans body mechanics. Modulation of body stiffness would enable nematodes to tune locomotion or swimming gaits and may have implications in touch sensation.  相似文献   

8.
Geoperception in the lentil root cap   总被引:1,自引:0,他引:1  
Previous analysis showed that, in its initial phase, the geotropic response of Lens culinaris L. roots cannot be explained by a simple action by sliding, pressure or contact of amyloplasts on a sensitive surface located along the longitudinal wall. In this study another mode of action is tested by considering the following parameters as functions of the roots inclination: (1) the distance (d) which the amyloplasts move; (2) their number of contacts (mean c) with parietal cytoplasm; (3) the variable (sin alpha) of the transversal component of the statolith weight (mean M x g sin alpha). It is shown that the initial rate of curvature (mean V), at the various angles, is related to the sedimentation of the amyloplasts by the equation mean V = a log b mean d mean c sin alpha (where a and b are constants). The results obtained prove that the geotropic stimulation is dependent upon the sine of the angle (alpha) of the root inclination and explain the sine rule deviation. The role of statoliths is discussed in the light of recent literature on growth inhibitors which are involved in the geotropic reaction.  相似文献   

9.
The geotropic responses of Phycomyces sporangiophores were studied under varying intensities of illumination, using a low speed centrifuge and a fixed beam of blue light. This light has a strongly inhibitory effect on the transient geotropic response, reducing it to 36 per cent of its magnitude in darkness. The inhibition does not vary systematically with light intensity over a range of 400-fold. The light sensitivity of the transient geotropic response thus differs from the light-growth response system, which shows the same growth rate in light and darkness. By contrast, the slower long term geotropic response is enhanced by light of moderate intensities, but is strongly inhibited by high intensities. At and above a mean intensity of about 1 µw/cm2, the long term response is completely removed. If the intensity is lowered from an inhibitory level, either to darkness or to a low level, the geotropic response appears after a time lag of 20 minutes. Furthermore an increase in intensity from one level to another, both levels normally enhancing, results in a transient reversal in the long term geotropic response, also after a time lag of 20 minutes. Thus it is suggested that light is acting at some intermediate step in the long term geotropic sensory system, a step that normally requires 20 minutes for completion.  相似文献   

10.
The objective of this report was to study the influence of the orientation of gravitational loading on the behavior of anterior and posterior trunk muscles during anterior trunk flexion-extension. Participants (N=13) performed five (5) cycles of trunk flexion-extension while standing with gravity parallel to the body axis and five (5) cycles while in the supine condition (e.g. sit-ups) with gravity perpendicular to the body axis. Surface electromyographic (EMG) patterns from lumbar paraspinal, rectus abdominis, external oblique, rectus femoris, semimembranosis, and biceps femoris muscles were analyzed during each condition. EMG signals were synchronized with lumbar flexion and trunk inclination angles. Flexion-extension from the standing position resulted in a myoelectric silent period of the lumbar posterior muscles (e.g. flexion-relaxation phenomena (FRP)) as well as the hamstring muscles through deep angles during which activity was observed in abdominal muscles. Flexion-extension during sit-ups, however, resulted in a myoelectric silent period of the abdominal muscles and the quadriceps through deep angles during which the lumbar posterior muscles were active. In this condition, the FRP was not observed in posterior muscles. The new findings demonstrate the profound impact of the orientation of the gravity vector on the FRP, the abdominal muscles reaction to gravitational loads during sit-ups and its relationships with lumbar antagonists and thigh musculature. The new findings suggest that gravitational moments requirements dominate the FRP through the prevailing kinematics, load sharing and reflex activation-inhibition of muscles in various conditions. Lumbar kinematics or fixed sensory motor programs by themselves, however, are not the major contributor to the FRP. The new findings improve our insights into spinal biomechanics as well as understanding and evaluating low back disorders.  相似文献   

11.
超重对前庭系统及相关体系结构和功能的影响   总被引:2,自引:0,他引:2  
孙久荣 《动物学报》2001,47(3):343-346
超重环境中怀孕、出生或生存的动物返回正常环境后,行为活跃、站立姿势夸张、空中翻正及游泳和在转动横梁上行走的平衡能力下降,超重增加伸肌的力、改变耳石的形态和分布、降低毛细胞和前神经元对重力的敏感性、相应增加和减少某些神经递质(如云甲肾上腺素和5-HT)的合成和分泌,脑干内不同的核团构成特异性应答超重和减重刺激的神经网络。  相似文献   

12.
Hejnowicz Z  Sievers A 《Protoplasma》1981,108(1-2):117-137
Summary The behavior of statoliths in rhizoids differently oriented with respect to the gravity vector indicates that there are cytoskeleton elements which exert forces on the statoliths, mostly in the longitudinal directions. Compared to the sum of the forces acting on a statolith, the gravitational force is a relatively small component,i.e., less than 1/5 of the cytoskeleton force. The balance is disturbed by displacing the rhizoid from the normal vertical orientation. It is also reversibly disturbed by cytochalasin B such that some statoliths move against the gravity force. Phalloidin stabilizes the position of the statoliths against cytochalasin B. We infer that microfilaments are involved in controlling the position of statoliths, and that there is a considerable tension on these microfilaments. The vibration frequency of the microfilaments corresponding to this tension is in the ultrasonic range.Visiting Professor on a grant from Deutsche Forschungsgemeinschaft.  相似文献   

13.
The intensity of light required to just counterbalance geotropic orientation of young rats, with eyelids unopened, is so related to the angle of inclination (α) of the creeping plane that the ratio log I/log sin α is constant. This relationship, and the statistical variability of I as measured at each value of α, may be deduced from the known phototropic and the geotropic conduct as studied separately, and affords proof that in the compounding of the two kinds of excitation the rat is behaving as a machine.  相似文献   

14.
A method is described which measures the excitation of Agriolimax by light, during the progress of light adaptation, by assuming that the orientating effect of continuous excitation is expressed as a directly proportionate tension difference in the orienting muscles of the two sides of the body. The tendency toward establishment of such a tension difference is caused to work against a similar geotropic effect at right angles to the phototropic one. This enables one to study the kinetics of light adaptation, and of dark adaptation as well. The situation in the receptors is adequately described by the paradigm See PDF for Equation similar to that derived by Hecht for the differential sensitivity of various forms, but with the difference that the "dark" reaction is not only "bimolecular" but also autocatalysed by the reaction product S. The progress of dark adaptation is reflected (1) in the recovery of the amplitude of the orientation and (2) in the rates of light adaptation at different levels of the recovery; each independently supports these assumptions, for which the necessary equations have been provided. These equations also account for the relative variabilities of the angles of orientation, and, more significantly, for the two quite different kinds of curves of dark adaptation which are obtained in slightly different types of tests.  相似文献   

15.
A biomechanical model of the foot is developed and analyzed to determine the distribution of support under the metatarsal heads, the tension in the plantar aponeurosis, and the bending moment at each of the joints of the foot. This model is an extension of our earlier work to include the role of muscles, tendons, and ligaments. Two cases are presented: in the first the center of gravity of the body is over the mid foot, and in the second, the center of gravity is anterior, over the metatarsals, and no support is provided by the heel. The model shows the extent to which the muscles reduce the force in the supporting ligaments at each of the joints and decrease the tension in the plantar aponeurosis, and that this effect is more pronounced when the center of gravity of the body is moved forward.  相似文献   

16.
The geotropic orientation of young mice, on a plane at angles between 20° and 50° to the horizontal, obeys the equations previously found for young rats by Crozier and Pincus (1926–27). When the individuals tested in such experiments are not of the utmost uniformity, the variability of the measured orientations is increased.  相似文献   

17.
【背景】福寿螺因其食性杂、抗逆性和繁殖力强以及自然天敌少等不断扩散,侵害农作物,被列为我国首批外来入侵物种。国内外学者一直致力于研究对其的防治与监控。自然界中福寿螺存在2种壳色——黄色和黑色,壳色受遗传因素和环境因素的双重影响。广东省福寿螺多以黑色为主,福寿螺倾向于与不同壳色的螺交配。壳色在一定程度上影响其交配的选择性,但2种壳色的福寿螺繁殖力指标差异不显著。而关于这2种壳色的螺在形态学上的差异鲜有报道。【方法】利用生物统计软件和分析方法进行相关性分析、通径分析及多元回归分析,计算相关系数、通径系数和决定系数,研究2种壳色福寿螺形态性状与体质量的关系。【结果】2种壳色福寿螺的体质量、层高的变异系数较大,且黄色比黑色变异系数大。对黄色福寿螺体质量影响较大的依次为壳高、口宽;对黑色福寿螺体质量影响较大的依次为口宽、层高。【结论与意义】2种壳色福寿螺在形态性状方面差异显著,可以将壳色作为特征标记,为福寿螺的监测与灾害评估提供参考。  相似文献   

18.

Objectives:

Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations.

Methods:

15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP).

Results:

After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%).

Conclusion:

The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.  相似文献   

19.
The snail Helix nemoralis in negatively geotropic creeping orients upward upon an inclined surface until the angle of the path of progression (θ) is related to the tilt of the surface (α) as (Δ sin θ) (Δ sin α) = – const.; θ is very nearly a rectilinear function of log sin α. The precision of orientation (P.E.θ) declines in proportion to increasing sin α, P.E.θ/θ in proportion to θ. These facts are comprehensible only in terms of the view that the limitation of orientation is controlled by the sensorial equivalence of impressed tensions in the anterior musculature.  相似文献   

20.
Postural responses to vibrostimulation (50–100 Hz, 0.5 mm, 4–8 sec) of muscles of the back surface of the neck were studied in healthy subjects. In the sitting position, vibrostimulation evoked local displacements (backward head deflection), but global postural responses (forward inclination of the whole body) developed in the standing position. The amplitude of the evoked body inclination was dependent upon the site of the vibrostimuli application along the vertebral column. Asymmetrical application of vibrostimuli to the muscles of the right or left neck side was accompanied by development of a lateral component in the postural response. Changes in the spatial orientation of the head led to the changes in postural response direction: head turning to the right resulted in right-side body deviation during vibration, and vice versa. Illusions of head bend caused by habituation to its static turning were accompanied by precisely the same changes in the direction of body deviation. It is assumed that neck-evoked motor events are mediated via central mechanisms that are involved in perception of the head and body position in space.Translated from Neirofiziologiya, Vol. 25, No. 2, pp. 101–108, March–April, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号