首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arctonyx” fossil remains from the Liucheng Gigantopithecus Cave, Guangxi, are redescribed and analysed in details. Detailed tooth character differences between Arctonyx and Meles are analysed. It is shown that materials from the Liucheng Gigantopithecus Cave actually belong to two species of Meles: Meles minor and Meles magnus n. sp. At the same time, a review of Late Pliocene and Early Pleistocene Meles records in China is made. During Late Pliocene, Meles are only represented by M. chiai and one archaic form. During Early Pleistocene, Meles from northern and central part of China are represented by two nearly sympatric species Meles chiai and Meles teihardi. Meles from South China are represented by M. minor and M. magnus n. sp., though the distribution of the two species is still unclear. M. magnus n. sp. is so far only known from the Liucheng Gigantopithecus Cave, whereas M. minor is probably also known from Longgupo, Chongqing in the central part of China besides Liucheng. Great diversity of Meles in Early Pleistocene in China indicates that the genus radiated earlier than previously thought. Phylogenetic analysis suggests M. magnus n. sp. is sister group to living M. leucurus, whereas M. minor and M. chiai are early branches in Meles evolution.  相似文献   

2.
In Canis and Ursus the largest proportion of attachments of muscles of the shoulder and brachium on the scapula and humerus is direct; fewer attachments are aponeurotic or tendinous. In both genera most attachments can be associated with superficial osteological features (scars or delimitable surfaces); attachments that lack such features are direct. Most aponeurotic attachments are associated with rugose scarring whereas tendinous attachments are often associated with smooth surfaces. Although most attachments can be associated with osteological features the areal extent of attachment is often not inferrable from the bone. The inference of muscle size or functional significance from osteological features is problematic. The amount of myological information that can be deciphered from the osteology in Canis and Ursus is greater than that reported for particular members of other vertebrate groups which suggests that there may be differences in the degree to which muscles can be reconstructed from superficial osteology alone. Nonetheless, even in mammals such as the Carnivora, detailed muscular reconstructions in extinct taxa cannot be achieved without reference to the musculature of extant relatives. Such reconstructions rely on assumptions, that often have not been adequately tested, regarding the similarity of musculature in closely related taxa. This testing and well corroborated hypotheses of phylogenetic relationship are essential for the evaluation of the accuracy of reconstructions of the musculature in fossil vertebrates.  相似文献   

3.
Haitian species of the extinct ground sloth genus Neocnus (Mammalia: Pilosa: Megalonychidae) have previously been hypothesized to have a much reduced jugal bone and a correspondingly reduced masseter musculature but a paucity of specimens has prevented further investigation of this hypothesis. Recent discovery of jugal bones belonging to Haitian specimens of Neocnus within the University of Florida Museum collections enables the element to be more accurately described. The discovery also makes it possible to explore mastication in these sloths. Osteological characters related to feeding were examined, along with comparative estimations of bite force with the extant tree sloths, Bradypus and Choloepus, and their known dietary habits as a means to infer aspects of the paleodiet of Neocnus. There is a significant difference in moment arm calculations for m. masseter between predicted and actual jugals, but the overall significance for bite force is lost and hampered by small sample size. Neocnus demonstrates a variety of characters that are similar to those of Bradypus and not to Choloepus, which is a close phylogenetic relative. The masticatory musculature of Neocnus enabled a chewing cycle emphasizing a grinding combination of mesiodistal and linguobuccal movements of the molariform dentition. The orientations of m. masseter and m. temporalis are estimated to produce relatively high bite force ratios that imply a masticatory system with stronger versus faster components. Because of the similarity of bite forces and jaw mechanics to those of Bradypus, in addition to a number of osteological adaptations indicative of herbivorous grazers (elevated mandibular condyle, large and complex masseter, and robust angular process), the Haitian forms of Neocnus are considered to have been selective feeders with a folivorous diet. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
The nine-banded armadillo, Dasypus novemcinctus, is a member of the family Dasypodidae, which contains all extant species of armadillos and represents the most diverse group of xenarthran mammals by their speciation, form, and range of scratch-digging ability. This study aims to identify muscle traits that reflect specialization for fossorial habit by observing forelimb structure in D. novemcinctus and comparing it among armadillos using available myological data. A number of informative traits were observed in D. novemcinctus and among Dasypodidae, including the absence of m. rhomboideus profundus, the variable presence of a m. articularis humeri and m. coracobrachialis, two heads of m. triceps brachii with scapular origin, and a lack of muscle mass devoted to antebrachial supination. Muscle mass and myosin heavy chain (MHC) isoform content were also quantified from our forelimb dissections. New osteological indices are additionally calculated and reported for D. novemcinctus. Collectively, the findings emphasize muscle mass and power output for limb retraction and specialization of the distal limb for sustained purchase of soil by strong pronation and carpal/digital flexion. Moreover, the myological traits assessed here provide a valuable resource for interpretation of muscle architecture specializations among digging mammals and future reassessment of armadillo phylogeny.  相似文献   

5.
The form and function of the masticatory apparatus of the fossil genera Vassallia and Holmesina are analyzed so that the possible dietary behaviors of these pampathere xenarthrans might be inferred. Analysis is based on comparisons of dental morphology and skeletal features (through RFTRA) associated with the masticatory musculature among the pampatheres, the extant dasypodids Euphractus and Dasypus, and the glyptodont Propalaeohoplophorus. A method is proposed for generating a moment arm of the massetericus independently of the muscle's line of action, which allows direct comparison among extant and fossil mammals. The masticatory apparatus of the pampatheres strongly resembles that of Euphractus among extant forms, but the development of muscular attachment sites indicates a more powerful musculature, particularly the massetericus; the taxa differ most markedly in dental morphology. Long moment arms about the jaw joint and large ratios of muscle to bite moments indicate forceful rather than quick movements. The various skeletal and dental features analyzed suggest that the masticatory apparatus of the pampatheres was more powerful and efficient in transverse chewing than in dasypodids and that they were primarily grazers consuming mainly coarse vegetation. These features, some shared with herbivorous ungulates, include wide, relatively flat mandibular condyles; condyles well dorsal to muscular insertion sites; expanded angular processes; unfused symphysis; a posteriorly extended tooth row; open-rooted teeth; mesial teeth that bear mainly transverse striations; distal teeth that are mesiodistally elongated, bear basined occlusal surfaces, and in Vassallia possess a central island of resistant dentine that acted as a functional analogue of an ectoloph; and teeth with a stepwise arrangement. The results of this study indicate that detailed analysis and comparison of morphology lead to useful predictions of behavior.  相似文献   

6.
The discovery of a largely complete and well preserved specimen of Poposaurus gracilis has provided the opportunity to generate the first phylogenetically based reconstruction of pelvic and hindlimb musculature of an extinct nondinosaurian archosaur. As in dinosaurs, multiple lineages of basal archosaurs convergently evolved parasagittally erect limbs. However, in contrast to the laterally projecting acetabulum, or “buttress erect” hip morphology of ornithodirans, basal archosaurs evolved a very different, ventrally projecting acetabulum, or “pillar erect” hip. Reconstruction of the pelvic and hindlimb musculotendinous system in a bipedal suchian archosaur clarifies how the anatomical transformations associated with the evolution of bipedalism in basal archosaurs differed from that of bipedal dinosaurs and birds. This reconstruction is based on the direct examination of the osteology and myology of phylogenetically relevant extant taxa in conjunction with osteological correlates from the skeleton of P. gracilis. This data set includes a series of inferences (presence/absence of a structure, number of components, and origin/insertion sites) regarding 26 individual muscles or muscle groups, three pelvic ligaments, and two connective tissue structures in the pelvis, hindlimb, and pes of P. gracilis. These data provide a foundation for subsequent examination of variation in myological orientation and function based on pelvic and hindlimb morphology, across the basal archosaur lineage leading to extant crocodilians. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

7.
The caudal myology of prehensile-tailed monkeys (Cebus apella, Alouatta palliata, Alouatta seniculus, Lagothrix lagotricha, and Ateles paniscus) and nonprehensile-tailed primates (Eulemur fulvus, Aotus trivirgatus, Callithrix jacchus, Pithecia pithecia, Saimiri sciureus, Macaca fascicularis, and Cercopithecus aethiops) was examined and compared in order to identify muscular differences that correlate with osteological features diagnostic of tail prehensility. In addition, electrophysiological stimulation was carried out on different segments of the intertransversarii caudae muscle of an adult spider monkey (Ateles geoffroyi) to assess their action on the prehensile tail. Several important muscular differences characterize the prehensile tail of New World monkeys compared to the nonprehensile tail of other primates. In atelines and Cebus, the mass of extensor caudae lateralis and flexor caudae longus muscles is more uniform along the tail, and their long tendons cross a small number of vertebrae before insertion. Also, prehensile-tailed monkeys, especially atelines, are characterized by well-developed flexor and intertransversarii caudae muscles compared to nonprehensile-tailed primates. Finally, Ateles possesses a bulkier abductor caudae medialis and a more cranial origin for the first segment of intertransversarii caudae than do other prehensile-tailed platyrrhines. These myological differences between nonprehensile-tailed and prehensile-tailed primates, and among prehensile-tailed monkeys, agree with published osteological and behavioral data. Caudal myological similarities and differences found in Cebus and atelines, combined with tail-use data from the literature, support the hypothesis that prehensile tails evolved in parallel in Cebus and atelines. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The ability of sabretoothed felids to achieve sufficiently high bite forces for predation at extreme gape angles has been the subject of decades of debate. Previous studies have indicated that bite forces in derived sabretoothed felids would have been low, but that they were probably augmented by head depressing muscles. However, bite mechanics is a dynamic process, and mechanical properties change with changes in gape angles. In this study, I present the first comprehensive model of bite mechanics, vector angles, and forces about the temporomandibular joint at gape angles from occlusion to maximal inferred gape in sabretoothed felids. Primitive sabrecats (Machairodus, Paramachairodus) appear broadly comparable to extant large felids (Panthera, Puma), but derived sabrecats in the groups Homotherini (Amphimachairodus, Homotherium, Xenosmilus) and Smilodontini (Megantereon, Smilodon) are often substantially different from either of the former. The ability of the mandibular adductors to generate torque changes with gape angle, indicating that previous models fail to capture potentially important differences in bite function. Inferred muscle sizes and the angles of effective torque from individual adductor fibres in derived sabrecats are different from those of primitive sabrecats and extant large felids, but they had evolved a number of compensatory adaptations for maximizing force output at the canine and carnassial, primarily changes in muscle fibre angles and more compact crania. Inferred outforces at the canines and carnassials were comparable amongst all groups at low gape angles, but at extreme gape angles outforces would have been low, supporting previous hypotheses of head flexor contribution during initial stages of the killing bite in sabrecats. Mandibular adduction in extant carnivores is a complicated pattern of differences in twitch tension and electromyographical activity at different gape angles, and inference of maximal isotonic bite forces from reconstructed mandibular adductor sizes in fossils will give estimates primarily suitable for comparative purposes. Potentially, derived sabrecats could have evolved differences from extant felids in adductor histochemistry or pinnation angle of individual fibres. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 220–242.  相似文献   

9.
Barn Owls (Tytonidae) are nocturnal raptors with the largest geographical distribution among Strigiformes. Several osteological, morphometrical, and biomechanical studies of this species were performed by previous authors. Nevertheless, the myology of forelimb and tail of the Barn Owls is virtually unknown. This study is the first detailed myological study performed on the wing and tail of the American Barn Owl (Tyto furcata). A total of 11 specimens were dissected and their morphology and muscle masses were described. Although T. furcata has the wing and tail myological pattern present in other species of Strigiformes, some peculiarities were observed including a difference in the attachment of m. pectoralis propatagialis due to the lack of the os prominence, and the presence of an osseous arch in the radius that seems to widen the anchorage area of the mm. pronator profundus, extensor longus alulae, and extensor longus digiti majoris. Furthermore, the m. biceps brachii has an unusual extra belly that flexes the forearm. The interosseous muscles have a small size and lacks ossified tendons. This feature may be indicative of a lower specialization in the elevation and flexion of the digiti majoris. Forelimb and tail muscle mass account for 10.66 and 0.24% of the total body mass, respectively. Forelimb muscle mass value is similar to the nocturnal (Strigiformes) and diurnal (Falconidae and Accipitridae) raptors, while the tail value is lower than in the diurnal raptors (Falconidae and Accipitridae). The myological differences with other birds of prey are here interpreted in association with their “parachuting” hunting style. This work complements our knowledge of the axial musculature of the American Barn owls, and provides important information for future studies related to functional morphology and ecomorphology.  相似文献   

10.
A comparative study of limb morphology indicates that the osteological and myological differences between Didelphis virginiana, the Virginia opossum, and Chironectes minimus, the water opossum, may be associated in Chironectes with decreased resistance to water and increased mechanical advantage of its muscles for increased force. Limb myology is described and a synonymy of terms is applied to the musculature of these two opossums.  相似文献   

11.
Notoungulates, litopterns, and astrapotheres are among the most representative mammals of the early Miocene Santacrucian Age. They comprise a diversity of biological types and sizes, from small forms, comparable to rodents, to giants with no analogues in modern faunas. Traditionally, all of them have been considered herbivores; this diversity is reflected in different morphologies of the masticatory apparatus, suggesting a variety of feeding habits. The application of biomechanics to the study of fossil mammals is a good approach to test functional hypotheses. Jaws act as a lever system, with the pivot at the temporomandibular joint, with masticatory muscles providing the input force, whereas the output force is produced by the teeth on food. The moment arms of the lines of action of the muscles can be estimated to analyze relationships between bite force and bite velocity. A morphogeometric approach inspired by Vizcaíno et al. (1998) is applied to estimate muscle moment arms in a static 3D bite model based on three-dimensional landmarks and semilandmarks on crania with mandibles in occlusion. This new 3D geometric method to evaluate jaw mechanics demonstrated its reliability when applied to a control sample of extant mammals that included carnivores, herbivores, and omnivores. Our results indicate that, except for Pachyrukhos, in no Santacrucian ungulate does the masseter muscle have greater mechanical advantage than the temporalis. Among them, notoungulates have a better configuration to develop force on the molar tooth row than litopterns. This indicates a diet richer in tough plant materials for Santacrucian notoungulates (e.g., grass or even bark) than for litopterns (e.g., dicots). This is consistent with recent ecomorphological approaches applied to this fauna. Finally, the approach proposed here proves to be useful for comparing masticatory performance and it is a powerful tool to validate ecomorphological dietary hypotheses in fossil taxa.  相似文献   

12.

Functional heterogeneity is a skeletal muscle’s ability to generate diverse force vectors through localised motor unit (MU) recruitment. Existing 3D macroscopic continuum-mechanical finite element (FE) muscle models neglect MU anatomy and recruit muscle volume simultaneously, making them unsuitable for studying functional heterogeneity. Here, we develop a method to incorporate MU anatomy and information in 3D models. Virtual fibres in the muscle are grouped into MUs via a novel “virtual innervation” technique, which can control the units’ size, shape, position, and overlap. The discrete MU anatomy is then mapped to the FE mesh via statistical averaging, resulting in a volumetric MU distribution. Mesh dependency is investigated using a 2D idealised model and revealed that the amount of MU overlap is inversely proportional to mesh dependency. Simultaneous recruitment of a MU’s volume implies that action potentials (AP) propagate instantaneously. A 3D idealised model is used to verify this assumption, revealing that neglecting AP propagation results in a slightly less-steady force, advanced in time by approximately 20 ms, at the tendons. Lastly, the method is applied to a 3D, anatomically realistic model of the masticatory system to demonstrate the functional heterogeneity of masseter muscles in producing bite force. We found that the MU anatomy significantly affected bite force direction compared to bite force magnitude. MU position was much more efficacious in bringing about bite force changes than MU overlap. These results highlight the relevance of MU anatomy to muscle function and joint force, particularly for muscles with complex neuromuscular architecture.

  相似文献   

13.
Wombats are unique among marsupials in having one pair of upper incisors, and hypsodont molars for processing tough, abrasive vegetation. Of the three extant species, the most abundant, the common wombat (Vombatus ursinus), has had the least attention in terms of masticatory muscle morphology, and has never been thoroughly described. Using MRI and digital dissection to compliment traditional gross dissections, the major jaw adductor muscles, the masseter, temporalis and pterygoids, were described. The masseter and medial pterygoid muscles are greatly enlarged compared to other marsupials. This, in combination with the distinctive form and function of the dentition, most likely facilitates processing a tough, abrasive diet. The broad, flat skull and large masticatory muscles are well suited to generate a very high bite force. MRI scans allow more detail of the muscle morphology to be observed and the technique of digital dissections greatly enhances the knowledge obtained from gross dissections.  相似文献   

14.
Tooth root surface areas serve as proxies for bite force potentials, and by extension, dietary specialization in extant carnivorans. Here, we investigate the feeding ecology of the extinct large-bodied ursid Agriotherium africanum, by comparing its root surface areas (reconstructed with the aid of computed tomography and three-dimensional image processing) and bite force estimates, with those of extant carnivorans. Results show that in absolute terms, canine and carnassial bite forces, as well as root surface areas were highest in A. africanum. However, when adjusted for skull size, A. africanum’s canine roots were smaller than those of extant solitary predators. With teeth being the limiting factor in the masticatory system, low canine root surface areas suggest that A. africanum would have struggled to bring down large vertebrate prey. Its adjusted carnassial root sizes were found to be smaller than those of extant hard object feeders and the most carnivorous tough object feeders, but larger than those of extant omnivorous ursids and Ursus maritimus. This and the fact that it displayed its highest postcanine root surface areas in the carnassial region (rather than the most distal tooth in the tooth row) suggest that A. africanum consumed more vertebrate tissue than extant omnivorous ursids. With an apparent inability to routinely bring down large prey or to consume mechanically demanding skeletal elements, its focus was most likely on tough tissue, which it acquired by actively scavenging the carcasses of freshly dead/freshly killed animals. Mechanically less demanding skeletal elements would have been a secondary food source, ingested and processed mainly in association with muscle and connective tissue.  相似文献   

15.
16.
Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their “conservative” morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints.  相似文献   

17.
18.
Aim The East Asia endemic Taiwania cryptomerioides Hayata is an iconic and relictual monotypic conifer whose main extant populations are now restricted to the Yunnan–Myanmar border, northern Vietnam and Taiwan. It has also been reported from several localities in Guizhou, Hubei and Fujian Provinces, China. Its fossil record indicates that, while it was more widely distributed in the Northern Hemisphere and grew under a range of different ecological conditions, it has remained almost unchanged in its morphology for over 100 Myr. We investigate whether these remaining extant, disjunct populations have diverged genetically; when such a divergence may have occurred; and which, if any, of the extant populations exhibit refugial characteristics. Location East Asia. Methods Sequences of five chloroplast DNA markers (petG–trnP, trnH–psbA, trnV–trnM, trnC–ycf6 and trnL–trnF) from all extant populations of T. cryptomerioides were analysed to reveal their phylogeography. Molecular clock models with fossil calibrations were used to estimate divergence times between extant populations. Results Extremely low nucleotide diversity was found in the overall population (π = 0.00077) with only nine haplotypes distinguished. The mainland Asia populations share one major ancestral haplotype. The insular populations in Taiwan all possess a unique haplotype with at least an eight‐mutational‐step difference to the mainland Asia haplotype. Molecular clock estimations demonstrated that the mean divergence time between the predominant insular population haplotype and the mainland Asia haplotype occurred at c. 3.23–3.41 Ma, followed by a split into Vietnamese and Yunnan–Myanmar populations (c. 1.0–1.39 Ma). Main conclusions Strong genetic differentiation exists between insular (Taiwan) and mainland Asia populations. The split between insular and mainland haplotypes can be dated back to the end of the Pliocene. The Yunnan–Myanmar border area, northern Vietnam and Taiwan are identified here as potential refugia for T. cryptomerioides. Other populations in mainland China are unlikely to be the result of historical fragmentation and their origins require further investigation.  相似文献   

19.
Compared with the deer mouse, Peromyscus maniculatus, the grasshopper mouse, Onychomys leucogaster, exhibits modifications in its jaw‐muscle architecture that promote wide gapes and large bite forces at wide gapes to prey upon large vertebrate prey. In this study, we determine whether jaw‐muscle anatomy predicts gape and biting performance in O. leucogaster, and we also assess the influence of gape on bite force in the two species. Although O. leucogaster has an absolutely longer jaw, which facilitates larger gapes, maximum passive gape is similar in both species, averaging ~12.5 mm. Thus, when scaled to jaw length, O. leucogaster has a smaller maximum passive gape. These results suggest that predatory behaviors of O. leucogaster may not require remarkably large gapes. On the other hand, both absolute and relative bite forces exerted by O. leucogaster are significantly larger than those of P. maniculatus. The largest bite forces in both species occur at 5.0 mm of gape at the incisors, or 40% of maximum gape. Although bite force in both species decreases at larger gapes, O. leucogaster does maintain a larger percentage of maximum bite force at gapes larger than 40% of maximum passive gape. Therefore, although structural modifications in the masticatory apparatus of O. leucogaster may constrain gape, they may help to maintain bite force at large gapes. These results suggest that increases in gape differentially influence the length‐tension properties of the jaw muscles in the two species. Finally, these results highlight the importance of considering the effect of muscle stretch on force production in comparative studies of bite force. As a first approximation, it appears that gapes of 40–50% of maximum gape in rodents optimizes bite force production at the incisors. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Synopsis The mechanisms of food procurement in the surgeonfishesCtenochaetus striatus andAcanthurus nigrofuscus from the Great Barrier Reef were determined by functional analyses of the jaws and associated structural elements (based on myological and osteological examinations and X-ray photographs) and by video analyses of actions of the mouth and body during feeding.Acanthurus nigrofuscus has relatively robust jaw bones. The movement of the elements during mouth opening is limited with a mean maximum gape angle of 112.8°. Each bite is relatively fast and is characterized by a quick nip at algal filaments, usually followed by a sidewads flick of the head. The jaws bear several broad multidenticulate teeth. It appears that these teeth engage turf algal strands which are either sheared during mouth closure or torn off as the head flicks sideways. InC. striatus, the jaw bones are considerably lighter than those ofA. nigrofuscus. There is much greater movement of the elements during mouth opening, resulting in a mean maximum gape angle of 177.6°. Each bite is slower than inA. nigrofuscus and is characterized by a wide gape as the mouth is applied to the substratum followed by a quick, upward flick of the lower jaw, with no sideways flick of the head. The jaws bear numerous elongate flexible teeth, with expanded incurved denticulate tips; those on the dentary often possessing a pointed blade-like process. It appears that these teeth brush particulate and epiphytic material from the surface of the turf algal strands and other substrata. These observations demonstrate howA. nigrofuscus andC. striatus are able to remove microalgae and detritus, respectively, from the same substratum. The results also demonstrate how relatively small differences in morphology can have a profound influence on the feeding abilities and trophic ecology of fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号