首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disturbance of methyl group metabolism in alloxan-diabetic sheep   总被引:1,自引:0,他引:1  
Alloxan-induced diabetes results in changes in the activities of a number of enzymes related to methyl group metabolism in sheep. Decreases in the activities of phospholipid methyltransferase and betaine-homocysteine methyltransferase in diabetic sheep liver indicate a reduced rate of choline synthesis and oxidation. A 65-fold increase in the activity of glycine methyltransferase and a 4-fold rise in the activity of gamma-cystathionase in diabetic sheep liver with elevated urinary excretion of cyst(e)ine suggest that catabolism of the methyl group of methionine and homocysteine was enhanced in the diabetic state.  相似文献   

2.
During growth of the primary leaves of Avena sativa L., the distribution of extractable L-phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and chalcone-flavanone isomerase (CFI, EC 5.5.1.6) activities in distinct leaf sections (top section, medium section and meristematic basal section) and in the epidermal and mesophyll tissues were investigated in relation to C-glycosylflavone accumulation. Characteristic changes have been observed in the levels of PAL and CFI activities within the three leaf sections, depending upon their stage of development. An increase in both enzyme activities accompanies a strong flavone accumulation in the section of the leaf that derives from the basal meristem. Highest specific PAL activity is localized in the meristem itself, which is poor in both flavones and CFI activity. Total flavone accumulation was found to be nearly the same in all three leaf tissues, lower and upper epidermis and mesophyll. Similarly, PAL activity is distributed about equally in these tissues in young leaves; in older ones, activity is relatively higher in the lower leaf epidermis. In contrast, CFI is found to be localized almost entirely in the mesophyll and not in the epiderms. Therefore the question arises whether CFI is involved at all in flavone metabolism and whether it may represent, as a marker enzyme, the localization of other specific C15-enzymes of the flavonoid biosynthetic pathway in oat primary leaves.Abbreviations PAL L-phenylalamine ammonia lyase - CFI chalcone-flavanone isomerase  相似文献   

3.
1. Sheep have a very low intake of methyl nutrients in the post-ruminant state, due to the almost complete degradation of dietary choline by rumen microorganisms, the lack of dietary creatine and the relatively low content of methionine in microbial proteins. 2. Methylneogenesis provides a major source of labile methyl groups in post-ruminant sheep and impairment of the methylneogenesis leads to a marked reduction of the labile methyl pool. 3. S-Adenosylmethionine (AdoMet) metabolism via transmethylation is most active in sheep liver and pancreas and is regulated by the availability of methionine and intracellular ratios of AdoMet to S-adenosylhomocysteine (AdoHcy). 4. Adaptive mechanisms which arise as a consequence of the poor methyl nutrition in post-ruminant sheep are a marked reduction of labile methyl catabolism and an increase in the capacity of methylneogenesis.  相似文献   

4.
The electrophoretically homogenous preparations of free multienzyme complexes involved in the Benson-Calvin cycle with mol wt of 520 ± 20 and 240 ± 10 kD were isolated from 15–25-day-old cotton (Gossypium hirsutum L.) leaves of the same story (the third and the fourth upper leaves). Enzyme preparations were obtained at three stages of plant development: at the stage of 6–8 true leaves, during flower-bud formation, and during flowering. Comparison studies of developmental changes in activities of ribose phosphate isomerase (RPI), phosphoribulokinase (PRK), and Rubisco were carried out. RPI and PRK activities of multienzyme complexes differed insignificantly (by 2.3% on the average). Significant changes were observed in Rubisco activity (by 30% on the average). The optimum enzymatic activities of these complexes as well as the highest photosynthetic rate were revealed at the stage of reproductive organ formation. This correlation indicates the major role of multienzyme complexes involved in the Benson-Calvin cycle in the developmental control of photosynthesis and epigenesis.  相似文献   

5.
Short-base stereophotogrammetry was used to study differential growth and development of the soft tissues of the face. Thirteen facial parameters were measured at ages 9, 11, 13, 15, and 16 years on 170 facial contour maps selected from a mixed longitudinal study of 26 boys and 26 girls. Each parameter was measured three-dimensionally, and its developmental progress at the earlier stages was expressed as a percentage of its value at 16 years of age. Standing height development was assessed in the same way. Three parameters that measured soft tissues surrounding the eyes grew little but were very advanced in their development, following a "neural" pattern. The remaining facial parameters grew more but were less advanced, and standing height was least advanced. There appeared to be three separate patterns of development, "neural," "facial," and "skeletal." Girls were, in general, smaller than boys, but their development was more advanced when measured as a percentage of size at 16 years compared with boys.  相似文献   

6.
W.E. BRENNAN-CRADDOCK, A.K. MALLETT, I.R. ROWLAND AND S. NEALE. 1992. Developmental changes in the activities of bacterial nitrate reductase, nitroreductase and β-glucuronidase and their response to fermentable dietary fibre, were investigated in caecal contents from suckling mice (2-week-old) and in mice aged 4–24 weeks fed either a purified fibre-free diet or that diet supplemented with 5% (w/w) pectin. There was no apparent age-related trend common to the three enzymes studied. Nitrate reductase activity in the mice fed the fibre-free diet did not markedly alter with age. Pectin administration, however, was associated with a significant increase in nitrate reductase activity, particularly in 4-week-old mice. Nitroreductase activity exhibited an overall upward trend in mice from 2 to 12 weeks and thereafter decreased. Caecal β-glucuronidase activity in mice increased sharply between 2 weeks and 4 weeks of age, thereafter not changing significantly until the 24th week. Pectin feeding had no consistent effect on activities either of nitroreductase or β-glucuronidase. The changes in enzyme activities with age were not related to the concentration of bacteria in the caecum, which was highest in the 2-week-old mice.
We conclude that the weaning is a period in which marked changes in caecal bacterial enzyme activities can occur.  相似文献   

7.
The developmental changes of prostaglandin (PG) synthesizing enzymes in the digestive system (stomach and small intestine) and the immune system (spleen and thymus) of rats were investigated. In all the digestive organs, the predominant PG produced from PGH2 changed at around 2 weeks after birth to another PG. Further, the predominant activities of PG synthesizing enzymes were different organ by organ in the digestive system. In the case of the immune system, only the activity of PGD2 synthesizing enzyme displayed a significant increase during development and the activities of other PG synthesizing enzymes remained insignificant throughout the development. These results suggest that PGs may play important roles during the development of each organ.  相似文献   

8.
Methionine methyl group metabolism in lemna   总被引:6,自引:6,他引:0       下载免费PDF全文
Mudd SH  Datko AH 《Plant physiology》1986,81(1):103-114
To provide information upon the ways in which Lemna paucicostata uses the methyl group of methionine, plants were grown for various periods (from 1 minute to 6.8 days) in the presence of a tracer dose of radioactive methyl-labeled methionine. Protein methionine accounted for approximately 19% of the accumulated methyl moieties; other methylated products, about 81%. The latter group included (percent of total methyl in parentheses): methylated ethanolamine derivatives (46%); methyl esters of the pellet (chiefly, or solely, pectin methyl esters) (15%); chlorophyll methyl esters (8%); unidentified neutral lipids (6%); nucleic acid derivatives (2-5%); methylated basic amino acids (2%). No other major methylated compounds were observed in any plant fraction. Available evidence suggests that little, if any, oxidation of the methyl group of methionine, directly or indirectly, occurs in Lemna. Our results indicate that S-methyl-methionine sulfonium is formed relatively rapidly, but does not accumulate at a commensurate rate, probably being reconverted to methionine. To our knowledge, this is the first time a reasonably complete accounting of the metabolic fate of methionine methyl has been obtained for any plant. The extent to which the results with Lemna may be representative of the situation for other higher plants is discussed.  相似文献   

9.
A powerful technique is described to localize the activities of a range of enzymes in a wide variety of plant tissues. The method is based on the coupling of the enzymatic reaction to the reduction of NAD and subsequent reduction and precipitation of nitroblue tetrazolium. Enzymes that did not reduce NAD could be visualized by coupling their activities to glucose-6-phosphate dehydrogenase activity via one or more intermediary 'coupling' enzymes. The method is shown to be applicable for the detection of the activities of hexokinase, fructokinase, sucrose synthase, uridine 5'-diphospho-glucose pyrophosphorylase, ADP-glucose pyrophosphorylase, phosphoglucomutase, and phosphoglucose isomerase. It could be used for all tissues tested, including green leaves, stems, roots, fruits, and seeds. The method is specific, very sensitive, and has a high spatial resolution, giving information at the cellular and the subcellular level. The localization of sucrose synthase, invertase, and uridine 5'-diphospho-glucose pyrophosphorylase in transgenic potato plants, carrying a cytokinin biosynthesis gene, is studied and compared with wild-type plants.  相似文献   

10.
11.
In developing tomato (Lycopersicon esculentum Mill.) fruit, starch levels reach a peak early in development with soluble sugars (hexoses) gradually increasing in concert with starch degradation. To determine the enzymic basis of this transient partitioning of carbon to starch, the activities of key carbohydrate-metabolizing enzymes were investigated in extracts from developing fruits of three varieties (cv VF145-7879, cv LA1563, and cv UC82B), differing in final soluble sugar accumulation. Of the enzymes analyzed, ADPglucose pyrophosphorylase and sucrose synthase levels were temporally correlated with the transient accumulation of starch, having highest activities in cv LA1563, the high soluble sugar accumulator. Of the starch-degrading enzymes, phosphorylase levels were fivefold higher than those of amylase, and these activities did not increase during the period of starch degradation. Fiften percent of the amylase activity and 45 to 60% of the phosphorylase activity was localized in the chloroplast in cv VF145-7879. These results suggest that starch degradation in tomato fruit is predominantly phosphorolytic. The results suggest that starch biosynthetic capacity, as determined by levels of ADPglucose pyrophosphorylase rather than starch degradative capacity, regulate the transient accumulation of starch that occurs early in tomato fruit development. The results also suggest that ADPglucose pyrophosphorylase and sucrose synthase levels correlated positively with soluble sugar accumulation in the three varieties examined.  相似文献   

12.
The ionophore A23187 stimulated adenylate cyclase activity in intact macrophages within 1 min. This action was blocked by pretreatment with indomethacin (25 μmol/l) suggesting the involvement of a prostaglandin (PG). PGE2 (500 nmol/l) also stimulated adenylate cyclase activity in intact cells, but this was not prevented by indomethacin pretreatment. Colchicine (100 μmol/l) potentiated the increases in macrophage cyclic AMP production seen after addition of PGE2 or A23187. The high affinity form of cyclic AMP phosphodiesterase (PDE) was activated within 1 min of the addition of A23187 to intact macrophages. The data suggest that the increase in macrophage cyclic AMP production after A23187 is a consequence of adenylate cyclase activation and not PDE inhibition. The endogenous production of a prostaglandin probably mediates this effect of A23187, emphasizing the importance of arachidonic acid metabolites in the regulation of macrophage functions.  相似文献   

13.
粘虫飞行过程中四种相关酶的活性变化   总被引:1,自引:0,他引:1  
对3日龄粘虫雌蛾吊飞过程中4种相关酶3-羟酰辅酶A脱氢酶(HOAD)、3-磷酸甘油醛脱氢酶(GAPDH)、3-磷酸甘油脱氢酶(GDH)和乳酸脱氢酶(LDH)的研究结果表明,在室内条件下,粘虫在吊飞过程中其能量代谢有以下特点: 在吊飞的初始5 min,所有与糖代谢和脂肪代谢相关的酶活性都快速升高,这段时期脂肪代谢的酶活性也完全被活化,HOAD活性明显增强;但在随后的5~60 min持续吊飞期间与能量代谢有关的酶活性都有所下降,表明此时飞行活性趋于平稳。飞行中的粘虫具有极高的有氧代谢能力,也具备一定的无氧代谢能力。吊飞过程中HOAD∶GAPDH大于1,说明粘虫飞行过程中能源物质利用属于混合型,但动用脂肪比糖类要多。  相似文献   

14.
The developmental profile of the activities of some enzymes involved in malate metabolism, namely phosphoenolpyruvate carboxylase (PEPC; EC 4. 1. 1. 31), NAD+-linked (EC 1. 1. 1. 37) and NADP+-linked (EC 1. 1. 1. 82) malate dehydrosenase (MDH), NAD+linked (EC 1. 1. 1. 39) and NADP+-linked (EC 1. 1. 1. 40) malic enzyme (ME), has been determined in leaves of peach [ Prunus persica (L.) Batsch cv. Maycrest], a woody C3 species. In order to study the role of these enzymes, their activities were related to developmental changes of photosynthesis, respiration, and capacity for N assimilation. Activities of PEPC, NAD(P)+-MDH and NADP+-ME were high in young expanding leaves and decreased 2- to 3-fold in mature ones, suggesting that such enzymes play some role during the early stages of leaf expansion. In leaves of peach, such a role did not seem to be linked to C3 photosynthesis or nitrate assimilation, in that photosynthetic O2 evolution and activities of nitrate reductase (EC 1. 6. 6. 1) and glutamine synthetase (EC 6. 3. 1. 2) increased during leaf development. In contrast, leaf respiration strongly decreased with increasing leaf age. We suggest that in expanding leaves of this woody species the enzymes associated with malate metabolism have anaplerotic functions, and that PEPC may also contribute to the recapture of respiratory CO2.  相似文献   

15.
16.
Developmental changes in cardiac sarcoplasmic reticulum in sheep   总被引:4,自引:0,他引:4  
Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p less than 0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p less than 0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p less than 0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alterations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.  相似文献   

17.
18.
Developmental changes in the tracheal mucociliary system in neonatal sheep   总被引:1,自引:0,他引:1  
We studied the postnatal development of the tracheal epithelium and mucociliary system in neonatal sheep. Secretion of macromolecules (radiolabeled with 35SO4 and [3H]-threonine), unidirectional fluxes of Cl-, Na+, and water (measured with radioactive tracers), and ciliary beat frequency (CBF) were measured in tracheal tissues in vitro. Tracheal mucus transport velocity (TMV) was measured in vivo. Sheep were studied at 0, 2, 4, 8, and greater than 24 (adult) wk after birth. In newborn sheep trachea, secretion of macromolecules was significantly elevated (cf. adults), and there was basal net secretion of Cl- under short-circuit and open-circuit conditions. This induced open-circuit secretion of Na+. Secretion of macromolecules decreased rapidly by 2 wk (by 40-50%) and was not different from adult values by 4 wk. Active Na+ absorption developed rapidly, and from 2 wk onward it predominated under open-circuit conditions, inducing net Cl- absorption. These changes in secretory function were associated with an age-related increase in TMV, whereas inherent tracheal CBF was unchanged. In sheep, therefore, the newborn's trachea has elevated secretion of macromolecules and secretes Cl- and liquid under basal conditions. Normal secretory function (a reduction in secretion of macromolecules coupled with net absorption of ions and presumably of liquid also) approaches adult function by 2-4 wk of age.  相似文献   

19.
Creatine metabolism was quantitated in sheep tissues by measurement of the amount of creatine and creatinine flowing into and out of various tissues using multi-catheterized sheep. The results showed that sheep derived no creatine from the digestive tract. The total renal clearance of creatine plus creatinine was about 18 mmoles per day. Daily creatine synthesis in the sheep was some 15 mmoles, of which 80% occurred in the liver. There was a daily uptake of about 5.4 mmoles of creatine and an output of 7.8 mmoles of creatinine by the hindlimbs of the sheep. This difference suggests that the skeletal muscle may be able to synthesize a significant amount of creatine. However, creatine metabolism in the heart, lung and brain was much less active.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号