首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Captopril has been reported to inhibit ouabain-sensitive Na+/K+-ATPase activity in erythrocyte membrane fragments. We investigated the effect of captopril on two physiological measures of Na+/K+ pump activity: 22Na+ efflux from human erythrocytes and K+-induced relaxation of rat tail artery segments. Captopril inhibited 22Na+ efflux from erythrocytes in a concentration-dependent fashion, with 50% inhibition of total 22Na+ efflux at a concentration of 4.8 X 10(-3) M. The inhibition produced by captopril (5 X 10(-3) M) and ouabain (10(-4) M) was not greater than that produced by ouabain alone (65.3 vs. 66.9%, respectively), and captopril inhibited 50% of ouabain-sensitive 22Na+ efflux at a concentration of 2.0 X 10(-3) M. Inhibition by captopril of ouabain-sensitive 22Na efflux was not explained by changes in intracellular sodium concentration, inhibition of angiotensin-converting enzyme or a sulfhydryl effect. Utilizing rat tail arteries pre-contracted with norepinephrine (NE) or serotonin (5HT) in K+-free solutions, we demonstrated dose-related inhibition of K+-induced relaxation by captopril (10(-6) to 10(-4) M). Concentrations above 10(-4) M did not significantly inhibit K+-induced relaxation but did decrease contractile responses to NE, although not to 5HT. Inhibition of K+-induced relaxation by captopril was not affected by saralasin, teprotide or indomethacin. We conclude that captopril can inhibit membrane Na+/K+-ATPase in intact red blood cells and vascular smooth muscle cells. The mechanism of pump suppression is uncertain, but inhibition of ATPase should be considered when high concentrations of captopril are employed in physiological studies.  相似文献   

2.
Monoclonal antibodies against horse kidney outer medulla (Na+ + K+)-ATPase were prepared. One of these antibodies (M45-80), was identified as an IgM, recognized the alpha subunit of the enzyme. M45-80 had the following effects on horse kidney (Na+ + K+)-ATPase: (1) it inhibited the enzyme activity by 50% in 140 mM Na+ and by 80% in 8.3 mM Na+; (2) it increased the Na+ concentration necessary for half-maximal activation (K0.5 for Na+) from 12.0 to 57.6 mM, but did not affect K0.5 for K+; (3) it slightly increased the K+-dependent p-nitrophenylphosphatase (K-pNPPase) activity; (4) it inhibited phosphorylation of the enzyme with ATP by 30%, but did not affect the step of dephosphorylation; and (5) it enhanced the ouabain binding rate. These data are compatible with a stabilizing effect on the E2 form of (Na+ + K+)-ATPase. M45-80 was concluded to bind to the extracellular surface of the plasmamembrane, based on the following evidence: (1) M45-80 inhibited by 50% the ouabain-sensitive 86Rb+ uptake in human intact erythrocytes from outside of the cells; (2) the inhibition of (Na+ + K+)-ATPase activity in right-side-out vesicles of human erythrocytes was greater than that in inside-out vesicles; and (3) the fluorescence intensity due to FITC-labeled rabbit anti-mouse IgM that reacted with M45-80 bound to the right-side-out vesicles was much greater than that in the case of the inside-out vesicles.  相似文献   

3.
The cDNAs encoding alpha 3-subunits of rat brain Na+,K+-ATPase and the neomycin resistance gene were incorporated into BALB/c 3T3 cells by the co-transfection method. Stably transformed cells were selected with 300 micrograms/ml of neomycin (G-418) for 6 weeks. Northern blot analysis using the 3'-non-translated region of the cDNA as a probe revealed that the alpha 3 mRNA appeared in transfected cells. Na+,K+-ATPase activity of the transfected cells was twice that of wild-type cells. Regarding ouabain sensitivity, the Na+,K+-ATPase showed two Ki values for ouabain (8 x 10(-8) and 4.5 x 10(-5) M) in transfected cells while wild-type cells displayed only the higher value. Ouabain sensitivity of Rb+ uptake also demonstrated two Ki values in the transfected cells (8 x 10(-8) and 4 x 10(-5) M) and a Ki in wild-type cells of 4 x 10(-5) M. It is concluded that alpha 3 is a highly ouabain-sensitive catalytic subunit of Na+,K+-ATPase. It is also suggested that ouabain sensitivity is exclusively determined by the properties of the alpha-subunit rather than the beta-subunit. This is the first report on the catalytic characteristics of the alpha 3 isoform of Na+,K+-ATPase.  相似文献   

4.
The hydrolysis of beta-(2-furyl)acryloyl phosphate (FAP), a synthetic substrate for the (Na+ + K+)-ATPase by the partially purified enzyme from rat brain and rat kidney, has been assessed. Using previously determined FAPase reaction conditions, it was discovered that the KI for ouabain of the alpha 2/3 isozyme of the (Na+ + K+)-ATPase was approximately 10(-5) M, while for the alpha 1 isozyme the KI was approximately 10(-3) M. These values were an order of magnitude higher (lower affinity) than the KI's for ouabain as determined when using ATP in a coupled assay for (Na+ + K+)-ATPase activity: approximately 10(-6) M and approximately 10(-4) M for the alpha 2/3 and alpha 1 isozymes, respectively. This discrepancy was alleviated by altering established reaction conditions. Previously published FAPase studies have overlooked this fact, since either the properties of the isozymes of the (Na+ + K+)-ATPase were unknown at that time, or ouabain titration profiles were never performed.  相似文献   

5.
The Mg-ATPase and (Na+ + K+)-stimulated Mg-ATPase in the mitochondrial and microsomal fraction of smooth muscular cells of the sheep's common carotid artery have been characterized in more detail. Optimal enzyme activities were found for all ATPases to be at pH 7.5-8.0 and 45 degrees C-50 degrees C. The energies of activation were found to be at 5-9 kcal/mole for both ATPases. Two-thirds of the (Na+ + K+)-stimulated Mg-ATPase were found to be ouabain-sensitive and thus attributed to the coupled (Na, K)-transport system. The pI 50 values of ouabain for microsomal and mitochondrial fractions are 6.3 and 6.0, respectively. The highest activity of (Na+ + K+)-stimulated Mg-ATPase is at 5-10 mM K+ and more than 50 mM Na+. One-third of the (Na+ + K+)-stimulated Mg-ATPase activity was found to be due to a stimulation of Mg-ATPase by Na+ alone, which is not inhibited by ouabain. The relationship of this activity to the ouabain-sensitive part of the (Na+ + K+)-stimulated Mg-ATPase and to Na+-transport is discussed. For the Mg-ATPases apparent KM(ATP) values were determined to be 1.4 and 1.0 mM, resp., and for the (Na+ + K+)-stimulated Mg-ATPases 0.15 and 0.14 mM, resp.  相似文献   

6.
The cation-transporting activity and Na,K-ATPase activity of CV-1 cell recipients of the mouse ouabain resistance gene (ouaR6, or OR6 cells; see Levenson, R., Racaniello, V., Albritton, L., and Housman, D. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1489-1493) have been further characterized. OR6 cells grown in strophanthidin (a cardiac aglycon which may be removed rapidly from the Na,K-ATPase) possess both ouabain-sensitive and -insensitive 86Rb+ uptake activities. The ouabain-sensitive 86Rb+ uptake activity of these cells (OR6-S cells) exhibits the same Ki for ouabain as that of the CV-1 parent cells (Ki(app) = 3 x 10(-7) M ouabain), but accounts for only approximately 30% of total 86Rb+ uptake into Na+-loaded OR6-S cells, compared to 80% for CV-1 cells. Most of the ouabain-resistant 86Rb+ uptake in OR6-S cells is dependent on internal Na+ and is insensitive to furosemide, suggesting that it is due to an ouabain-resistant Na,K pump. In OR6-S cell lysates, 50% of Na+-dependent ATPase activity is insensitive to 1 mM ouabain, compared to less than 5% in CV-1 cell lysates. In addition, purified plasma membranes from OR6-S cells contain a 100-kDa protein which is transiently phosphorylated by ATP in an Na+-dependent, K+-sensitive manner, like the alpha subunit of the CV-1 Na,K-ATPase and the canine renal Na,K-ATPase, but which is unaffected by preincubation in 1 mM ouabain. All of these data suggest that OR6-S cells possess a ouabain-insensitive Na,K pump with characteristics similar to the ouabain-sensitive pump of CV-1 parent cells. Since the mouse ouabain resistance gene does not encode either subunit of the Na,K-ATPase, these results suggest that the ouabain resistance gene product may modify the ouabain sensitivity of the endogenous CV-1 Na,K pump.  相似文献   

7.
Cloned cDNA encoding the so-far uncharacterized alpha-3 subunit of rat brain Na+,K+-ATPase (Hara et al. (1987) J. Biochem. 102, 43-58, Shull et al. (1986) Biochemistry 25, 8125-8132) was incorporated into a vector carrying the SP6 promoter. The mRNA produced in vitro was injected into Xenopus oocytes with the mRNA encoding the Na+,K+-ATPase beta subunit of Torpedo electroplax. Increased Na+,K+-ATPase activity in the oocyte membrane was observed. This newly expressed activity was inhibited by ouabain (Ki = 1.5 x 10(-7) M), suggesting that the alpha-3 subunit of rat brain Na+,K+-ATPase is a highly ouabain-sensitive catalytic subunit.  相似文献   

8.
We studied formation of domes in cell monolayers of the human colon carcinoma cell line Caco-2 which has been shown to exhibit signs of enterocytic differentiation and transport properties. After a 24 hr incubation with 4 X 10(-8) M ouabain, the number of domes seen on Caco-2 cell monolayers grown on plastic dishes was not significantly altered. After a 90 min preincubation with ouabain, 86rubidium uptake by Caco-2 cells was inhibited by ouabain, indicating that the cells have an ouabain-sensitive Na+, K+-ATPase, while dome formation was unaffected by ouabain. Domes were observed in Caco-2 cell monolayers grown on Nuclepore filters when the pore size was 0.015 micron but not when it was 0.030 micron. Our results suggest that dome formation in the Caco-2 cell line could be independent of Na+, K+-ATPase activity and might be due to accumulation of molecules having an effective hydrodynamic radius comprised between 0.015 and 0.030 micron.  相似文献   

9.
Potassium and sodium fluxes believed to be important in the cellular response to serum and growth factors have not been widely investigated in cells which have undergone terminal differentiation. In this study we have analyzed two main K+ transport systems--the ouabain-sensitive Na+/K+ pump and the bumetanide-sensitive transporter--in human muscle in vitro at two developmental stages: proliferating myoblasts and differentiated myotubes. Myoblast differentiation to myotubes was accompanied by a marked decrease in both the ouabain-sensitive and the bumetanide-sensitive K+ (Rb+) influxes. The addition of serum to the terminally differentiated myotubes had no effect on these K+ transporters. However, serum addition to serum-deprived, undifferentiated myoblasts produced a marked stimulation of these K+ fluxes. The bumetanide-sensitive K+ transporter in human myoblasts and myotubes has the following properties: (1) It carries 30% and 40% of the total K+ influx in myoblasts and myotubes, respectively. (2) It performs net efflux of K+ in the undifferentiated myoblasts and zero net flux (self-exchange) in terminally differentiated myotubes. (3) It is dependent on extracellular Na+ and Cl- in addition to K+. (4) In myoblasts, the Km value for K+ is 1.36 mM, similar to the Km for K+ of the Na+/K+ pump. (5) It is resistant to ouabain (up to 2 mM) and sensitive to furosemide (K0.5 = 5 X 10(-6) M) and bumetanide (K0.5 = 10(-7) M). These data indicate that following terminal differentiation of proliferating myoblasts to mitotically inactive myotubes there is an irreversible reduction of K+ fluxes with a change in the net flux of K+ carried by the bumetanide-sensitive transporter.  相似文献   

10.
Low ouabain concentration (1 x 10(-6) M) is shown to decrease intracellular K+ (K+in) and to increase intracellular Na+ (Na+in) in human fibroblast cell cultures. The same ouabain concentration was without effect upon K+in ad Na+in in rodent cultures such as BHK-21, mouse fibroblasts and rat glyoma C6 cells. K+in and Na+in in the mixed cultures of human and BHK-21 fibroblasts or human and mouse fibroblasts were found to be resistant to 1 x 10(-6) M ouabain whereas that of the mixtures of human and rat glyoma C6 cells proved to be ouabain-sensitive. The gap-junction-mediated dye transfer was revealed between human and BHK-21 cells. Such an effect was very small in the human-C6 cell mixed culture. It is concluded that cells with active ion pumps can support the maintenance of K+ and Na+ gradients in cells with inactive pumps, provided that effective ion transport via gap junctions takes place.  相似文献   

11.
Na+ interaction with unsealed human red cell ghosts has been studied by 23Na-NMR relaxation rate (R1) measurements. Data on a total of nine subjects including seven volunteer normotensives (NBP) and two untreated hypertensives (HBP) are presented. Qualitative treatment of the data gives information on the dynamic behavior of Na+ undergoing fast exchange between the free and bound states. The excess longitudinal relaxation rate (delta R)-1 plotted against total [Na+], known as the James-Noggle plot, exhibits different behavior for NBP and HBP ghosts, with a relatively low binding constant of approx. 100 M-1 for HBP (p less than 0.025) compared to a high constant of 500-1000 M-1 for NBP. To associate our NMR data with membrane-bound (Na+ + K+)-ATPase, 23Na relaxation rates were measured in the presence of 5 mM ouabain. James-Noggle plots constructed for ouabain-sensitive excess relaxation rates show the binding for NBP to be even high affinity (greater than 10(3) M-1) but low capacity. These data may suggest that for a given amount of intracellular Na+, the binding affinity could determine the distribution of Na+ between the membrane and cytoplasm, and that the (Na+ + K+)-ATPase which is primarily responsible for the Na+ affinity might assume an abnormal transport mechanism in HBP membranes.  相似文献   

12.
The Na+,K+ pump of resealed human red cell ghosts is more sensitive to inhibition by intracellular Ca (Cai) when they contain diluted hemolysate compared to ghosts without hemolysate. The activity of the Na+,K+ pump was assessed by measuring ouabain-sensitive 22Na efflux in ghosts that, in addition to the presence or absence of hemolysate, also contained arsenazo III to measure free Cai and a regenerating system to maintain a constant concentration of ATP. Incorporating hemolysate diluted 20-fold compared to in situ conditions doubled the inhibitory effects of 1-50 microM free Cai on the Na+,K+ pump and caused 50% inhibition to occur between 5 and 10 microM free Cai. Increased inhibition in the presence of the hemolysate was not due to a cytoplasm-induced decrease in the ATP content of the ghosts. These findings are consistent with the suggestion that the cytoplasm of human red cells contains a factor which increases the sensitivity of the Na+,K+ pump to inhibition by Cai.  相似文献   

13.
Two molecular forms of the (Na+,K+)-ATPase catalytic subunit have been identified in rat adipocyte plasma membranes using immunological techniques. The similarity between these two forms and those in brain (Sweadner, K. J. (1979) J. Biol. Chem. 254, 6060-6067) led us to use the same nomenclature: alpha and alpha(+). The K0.5 values of each form for ouabain (determined by inhibition of phosphorylation of the enzyme from [gamma-32P]ATP) were 3 X 10(-7)M for alpha(+) and 1 X 10(-5)M for alpha. These numbers correlate well with the K0.5 values for the two ouabain-inhibitable components of 86Rb+/K+ pumping in intact cells (1 X 10(-7) M and 4 X 10(-5)M). Quantitation of the Na+ pumps in plasma membranes demonstrated a total of 11.5 +/- 0.2 pmol/mg of membrane protein, of which 8.5 +/- 0.3 pmol/mg, or 75%, was alpha(+). Insulin stimulation of 86Rb+/K+ uptake in rat adipocytes was abolished by ouabain at a concentration sufficient to inhibit only alpha(+)(2-5 X 10(-6)M). Immunological techniques and ouabain inhibition of catalytic labeling of the enzyme from [gamma-32P]ATP demonstrated that alpha(+) was present in skeletal muscle membranes as well as in adipocyte membranes, but was absent from liver membranes. Since insulin stimulates increased Na+ pump activity in adipose and muscle tissue but not in liver, there is a correlation between hormonal regulation of (Na+,K+)-ATPase and the presence of alpha(+). We propose that alpha(+) is the hormonally-sensitive version of the enzyme.  相似文献   

14.
The role of PGE1 in regulating the activity of the Na+, K(+)-ATPase in Madin Darby Canine Kidney (MDCK) cells has been examined. PGE1 increased the initial rate of ouabain-sensitive Rb+ uptake by MDCK cells, a process that continued to occur over a 5-day period. The increase in the initial rate of ouabain-sensitive Rb+ uptake in MDCK cells treated with PGE1 could be explained by a 1.6-fold increase in the Vmax for ouabain-sensitive Rb+ uptake. The increase in the Vmax for ouabain-sensitive Rb+ uptake observed in MDCK cells under these conditions can be explained either by an increase in the number of active Na+ pumps, or by an increase in the efficiency of the Na+ pumps. Consistent with the former possibility is the observed increase in the number of ouabain binding sites, as well as the increase in Na+, K(+)-ATPase activity in cell lysates obtained from MDCK monolayers treated with PGE1. The involvement of cyclic AMP in mediating these effects of PGE1 on the Na+, K(+)-ATPase in MDCK cells is supported by: (1) the observation of similar effects in 8-bromocyclic AMP treated MDCK monolayers, and (2) a dramatic reduction of the stimulatory effects of PGE1 and 8-bromocyclic AMP on the Vmax for ouabain-sensitive Rb+ uptake, and on the number of ouabain binding sites in dibutyryl cyclic AMP resistant clone 3 (DBr3) (which is defective in cyclic AMP dependent protein kinase activity). PGE1 independent MDCK monolayers exhibit both an increase in the Vmax for ouabain-sensitive Rb+ uptake and an increase in the number of ouabain binding sites in response to 8-bromocyclic AMP. Apparently, the cyclic AMP phosphodiesterase defect in these PGE1 independent cells did not cause cellular cyclic AMP levels to be elevated to a sufficient extent to maximally increase the Na+, K(+)-ATPase activity in these variant cells.  相似文献   

15.
1. The ionic response of the liver fluke, Fasciola hepatica to perturbation of Na,K-pump activity has been determined by atomic absorption spectrophotometry. 2. The Na+/K(+)-ATPase inhibitor ouabain (1 x 10(-4) M) induced a marked reduction in K+ levels; Na+ and Ca2+ levels also fell. 3. The sodium ionophore monensin (1 x 10(-4) M) also caused a decrease in K+ levels, to below that of Na+. 4. Brief pretreatment with ouabain (1 x 10(-4) M, 15 min) followed by monensin treatment did not affect the decline in K+ levels, but did prevent the short-lived Na+ decline observed with monensin alone. 5. The deacetylated (amine) metabolite of the fasciolicide diamphenethide caused a short-lived drop in Na+ levels, but otherwise produced little change in ion levels within the fluke.  相似文献   

16.
The phenotype of a ouabain-resistant Aedes albopictus cell line has been partially characterized. Treatment of ouabain-sensitive cells with 0.005-1.0 mM ouabain resulted in an 80% reduction in the uptake of 86rubidium (86Rb+), an ion with an affinity for the K+ pump binding site; ouabain-resistant cells showed only a 40% reduction with 1.0 mM ouabain. When ouabain-sensitive cells were incubated in the presence of ouabain (0.1 mM) for one and one-half to three hours, the molar ratio of intracellular Na+/K+ rose from 0.2 to 4.2. In ouabain-resistant cells, a similar treatment had very little effect. Based on [3H] ouabain-binding studies, ouabain-resistant cells were estimated to have 60% fewer binding sites per cell than ouabain-sensitive cells. The spontaneous mutation rate from ouabain sensitivity to ouabain resistance was calculated to be 1-6 x 10(-8) mutations/cell/generation, a value similar to that reported for mammalian cells at the analogous locus.  相似文献   

17.
The influence of Tl+ on Na+ transport and on the ATPase activity in human erythrocytes was studied. 0.1-1.0 mM Tl+ added to a K+-free medium inhibited the ouabain-sensitive self-exchange of Na+ and activated both the ouabain-sensitive 22Na outward transport and the transport related ATPase. 5-10mM external Tl+ caused inhibition of the ouabain-sensitive 22Na efflux as well as the (Na+ plus Tl+)-ATPase. Competition between the internal Na+ and rapidly penetrating thallous ions at the inner Na+-specific binding sites of the erythrocyte membrane could account for the inhibitory effect of Tl+. An increase of the internal Na+ concentration in erythrocytes or in ghosts protected the system against the inhibitory effect of high concentration of Tl+. A protective effect of Na+ was also demonstrated on the (Na+ plus Tl+)-ATPase of fragmented erythrocyte membranes studied at various Na+ and Tl+ concentrations.  相似文献   

18.
Although there is much information on the response of spermatozoa from different species to osmotic changes, little has been reported about the mechanism/s by which spermatozoa react to similar changes in the osmotic pressure of the medium. In this study we examine the effect of inhibition of Na (+)K (+), ouabain-sensitive ATP-ase on the response of canine and porcine spermatozoa when they are incubated in hypoosmotic and hyperosmotic media. The presence of ouabain slightly decreased the percentages of total and progressive motility, and increased the percentages of altered acrosomes (from 13.0 +/- 0.3% to 17.2 +/- 0.4% in the presence of 10(-4) M ouabain) and, specially, swollen tails (from 0.6 +/- 0.1% to 5.9 +/- 0.2% in the presence of 10(-4) M of ouabain) in fresh dog semen, although it did not affect these parameters in boar semen samples. Moreover, ouabain increased the percentage of both altered acrosomes and swollen tails in canine spermatozoa incubated in 100 mOsm and in 900 mOsm media at concentrations higher than 10(-5) M and 10(-7) M, respectively. The percentage of viability of canine spermatozoa was not modified by ouabain after incubation in 100, 300 or 900 mOsm media. Furthermore, ouabain did not significantly affect boar spermatozoa incubated in 100, 300 or 900 mOsm media. Although ouabain induced a significant decrease in L-lactate production in canine spermatozoa in an isoosmotic medium (from 4.7 +/- 0.4 micromol mg protein x 60 min to 2.6 +/- 0.3 micromol mg protein x 60 min in the presence of 10(-4) M ouabain), there was no significant effect on L-lactate production in boar spermatozoa. These results indicate that while dog spermatozoa acted against changes in the osmotic pressure by a mechanism(s) related to Na (+)K (+), ouabain-sensitive ATP-ase, boar spermatozoa reacted to some mechanism(s) not related to ionic pumps.  相似文献   

19.
The interaction of the cardiac glycoside [3H]ouabain with the Na+, K+ pump of resealed human erythrocyte ghosts was investigated. Binding of [3H]ouabain to high intracellular Na+ ghosts was studied in high extracellular Na+ media, a condition determined to produce maximal ouabain binding rates. Simultaneous examination of both the number of ouabain molecules bound per ghost and the corresponding inhibition of the Na+, K+-ATPase revealed that one molecule of [3H]ouabain inhibited one Na+, K+-ATPase complex. Intracellular magnesium or magnesium plus inorganic phosphate produced the lowest ouabain binding rate. Support of ouabain binding by adenosine diphosphate (ADP) was negligible, provided synthesis of adenosine triphosphate (ATP) through the residual adenylate kinase activity was prevented by the adenylate kinase inhibitor Ap5A. Uridine 5'-triphosphate (UTP) alone did not support ouabain binding after inhibition of the endogenous nucleoside diphosphokinase by trypan blue and depletion of residual ATP by the incorporation of hexokinase and glucose. ATP acting solely at the high- affinity binding site of the Na+, K+ pump (Km approximately 1 microM) promoted maximal [3H]ouabain binding rates. Failure of 5'-adenylyl-beta- gamma-imidophosphate (AMP-PNP) to stimulate significantly the rate of ouabain binding suggests that phosphorylation of the pump was required to expose the ouabain receptor.  相似文献   

20.
Lignans are natural products, some of which were recently discovered in animal urines, semen and blood plasma. We investigated the actions of animal lignans obtained by total synthesis or extracted from urines of pregnant women on Na+, K+-ATPase in human red cells and human and guinea-pig heart cell membranes. Some of the tested lignans (enterolactone, prestegane B and 3-O-methyl enterolactone) inhibited Na+, K+-pump activity in human red cells with IC50 ranging from 5 to 9 X 10(-4) M. The IC50 for ouabain (7 X 10(-7) M) was not modified by addition of lignans. Enterolactone inhibited Na+, K+-ATPase activity in human and guinea pig heart membranes. It also displaced [3H]-ouabain binding from human heart with IC50 = 1.5 X 10(-4) M. The apparent dissociation rate constants (kd) of [3H]-ouabain were not different in presence of digoxin or enterolactone. Enterolactone exhibited a poor cross reactivity against antidigoxin antibodies. The aglycones of the lignans studied here were slight inhibitors of the Na+, K+-ATPase. However, we cannot exclude that a glycosyl- (and/or butenolide-) derivative of enterolactone could be one "endogenous ouabain-like" factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号