首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fibronexus ( FNX ), a very close transmembrane association of individual extracellular fibronectin fibers and actin microfilaments, was found previously at the substrate-binding surface of fibroblasts in tissue culture (Singer, 1. 1., 1979, Cell, 16:675-685). To determine whether the fibronexus might be involved in fibroblast adhesion during wound healing in vivo, we looked for co-localization of actin and fibronectin in granulation tissue formed within full-thickness guinea pig skin wounds. At 7-9 d, most of the actin fibers were observed to be coincident with congruent fibronectin fibers using double-label immunofluorescence microscopy. These fibronectin and actin fibers were co-localized at the myofibroblast surface surrounding the nucleus, and along attenuated myofibroblast processes which extended deeply into the extracellular matrix. This conspicuous co-distribution of fibronectin and actin fibers prompted us to look for fibronexuses at the myofibroblast surface with electron microscopy. We observed three kinds of FNXs : (a) tandem associations between the termini of individual extracellular fibronectin fibers and actin microfilament bundles at the tips of elongate myofibroblast processes, (b) plaque-like and, (c) track-like FNXs , in which parallel fibronectin and actin fibers were connected by perpendicular transmembranous fibrils. Goniometric studies on the external and internal components of these cross-linking fibrils showed that their membrane-associated ends are probably co-axial. Using immunoelectron microscopy on ultrathin cryosections, we confirmed that the densely staining external portion of these various FNXs does indeed contain fibronectin. The finding that these FNXs appear to connect collagen fibers to intracellular bundles of actin microfilaments is particularly significant. Our studies strongly suggest that the fibronexus is an important in vivo cell surface adhesion site functioning in wound repair, and perhaps within fibronectin-rich tissues during embryogenesis, tumor growth, and inflammation.  相似文献   

2.
The present study addressed the question as to whether the four different actin-associated proteins that are associated with the actin core bundle in intestinal microvilli (i.e. villin, fimbrin, myosin I and ezrin) are essential components of all microvilli of the body. The retina provides an excellent example of a tissue supplied with three different sets of microvilli, namely those of Müller's glial cells (Müller baskets), photoreceptors (calycal processes), and pigment epithelial cells. The main outcome of this study is that none of these microvilli contain all four actin-associated proteins present in intestinal microvilli. Müller cell microvilli contain villin, ezrin and myosin I (95 kDa isoform) but not fimbrin. Calycal processes of photoreceptors contain fimbrin but not villin, myosin I and ezrin. Finally, microvilli of pigment epithelial cells are positive for ezrin but not for villin, fimbrin and myosin I. Beoause of limited cross-reactivities of the antibodies to myosin I and ezrin, the myosin I data refer to the chicken retina whereas the findings with anti-ezrin were obtained with the rat retina. A further outcome of this study is that the actin filament core bundles in microvilli of chicken pigment epithelial cells are presumed to contain a crosslinking protein, which is not immunologically related to either villin, fimbrin or myosin I of the intestinal brush border.  相似文献   

3.
Summary The cone cells and corneagenous cells possess extensive networks of smooth tubular endoplasmic reticulum that may be involved in optical reflectance and light-adaptational responses, respectively. The extracellular basal lamina of the basement membrane is confluent with glial cell capillary walls and may prove to be a viaduct for the transmission of hemolymph-borne substances to the retina or of retinal degradation products to the hemolymph. In addition to dense pigment granules, the distal pigment cells are shown for the first time to contain migratory reflecting platelets that are usually polymorphic in light-adapted eyes but are rectangular in dark-adapted eyes. In the latter these plates become aligned against the crystalline cones and presumably contribute to the reflection superposition optics of the grass shrimp. Dark-adapted retinular cells possess well-developed perirhabdomal cisternae, oblong or ovoid mitochondria, generally vesicular rough endoplasmic reticulum, and occasional, spherical, calcium-like intrarhabdomal inclusions. Light-adapted retinular cells possess poorly developed perirhabdomal cisternae, lamelliform rough endoplasmic reticulum, and condensed mitochondria frequently associated with lipid droplets and pigment granules. The cytoplasmic boundaries of the reflecting pigment cells expand into the extracellular spaces between individual ommatidial retinular cells during dark adaptation and recede to the interommatidial extracellular spaces during light adaptation. Cytoplasmic microfilament bundles found only at the bases of partially light-adapted rhabdomeric microvilli may be involved in microvillar shortening.  相似文献   

4.
Summary The organisation of the outer nuclear layer and the structure of the outer limiting membrane of rabbit retina have been studied. In specimens stained by the Golgi method it was observed that in the outer nuclear layer each Müller cell envelops with its thin lamellar expansions ten to fifteen rod and cone cell bodies.The only cytoplasmic organelles in rod and cone cell bodies are a few free ribosomes and smooth surfaced vesicles. Neurotubules are prominent in the outer and inner fibres of the rods and cones.The processes of the Müller cells are distinctive because of the presence of many glycogen granules and glial filaments. Also present but only found near the outer limiting membrane are mitochondria, occasional centrioles and cilia that lack inner fibres. Long microvilli originate from the Müller cell processes on the scleral side of the outer limiting membrane.The photoreceptor cells on the vitreal side of the outer limiting membrane are completely isolated from each other by glial processes. On the scleral side of the membrane, the inner segments of the photoreceptor cells are not completely isolated by glial processes and so are frequently found in mutual contact. In the outer nuclear layer the granule of each photoreceptor is surrounded by more than one glial process while the fibres are often deeply embedded in a single glial process and provided with a mesofibre.At the level of the outer limiting membrane the visual cells and the glial expansions enveloping them are joined together by a junctional complex formed by a zonula adhaerens interposed between two very short zonulae occludentes. The same junctional complex joins to each other the contiguous expansions of the Müller cells and the mesofibres of the visual elements.  相似文献   

5.
The correlation between the extracellular deposition of fibronectin and the development of the actin-containing cytoskeleton was studied during the attachment and spreading of the rat mammary epithelial cell line Rama 25. During the initial phase of cell spreading, actin is localised in peripheral microfilament bundles. As cell spreading increases, the peripheral ring is displaced towards the perinuclear region. Fibronectin, deposited beneath the basal surface, co-localises with the actin-containing peripheral ring. The peripheral ring subsequently disappears and is replaced by a system of radial microfilaments that extend from the perinuclear region to the cell periphery. At this stage, there is no correlation between the distribution of fibronectin and actin. As cells form colonies, radial microfilament bundles are replaced by peripheral microfilament bundles which do not co-localise with fibronectin. Cells at the edges of colonies extend lamellae that contain microfilament stress fibres. In these structures there is co-localisation of actin, fibronectin and the a5 beta 1-integrin fibronectin receptor.  相似文献   

6.
The distal wall of the groove between the rat forestomach and glandular stomach is lined with a special type of columnar cells (CCGG) and with fibrillovesicular cells (FVC). The cardiac glands contain cardiac mucosa (CMC) and serous cells (CSC). The CCGG contain small mucous granules and special vesicles and tubules. The CMC are filled with large mucous granules and resemble mucous neck cells. The CSC are filled with large proteinaceous granules. The FVC are characterized by long microvilli, apical bundles of microfilaments and a complex "tubulovesicular system". The pattern of 3H-thymidine incorporation and the presence of immature and transitional forms indicate a possible origin of all the cell types concerned from a common undifferentiated precursor. The membranes of the tubulovesicular system of FVC as well as the apical cell membrane were reactive to Thiéry's carbohydrate stain. However, lanthanum tracing of the extracellular space and ultrastructural stereoscopy did not reveal a permanent continuity between both membrane systems. The absence of 3H-thymidine label showed that FVC were not proliferative. The structural characteristics of FVC do not account for a secretory, resorptive or receptive function. The special arrangement of microfilaments and the tubulovesicular system suggests an ability to fast changes in surface area.  相似文献   

7.
There were specific changes in the contents of cytoskeletal components and their organization during glioblast differentiation induced by glia maturation factor (GMF). Vimentin and glial fibrillary acidic protein increased in their contents, whereas actin did not. Tubulin was only a minor component of the glial cytoskeleton. Diffusely distributed intermediate filaments decreased and a number of fiber bundles were formed in parallel with the long axis of the large processes. The microtubules forming radiating fibers from the nuclear matrix to the cell body periphery were rearranged in such a way that the fibers perpendicular to the nuclear axis decreased whereas those parallel to the axis remained unchanged. Lattice type microfilaments decreased and stress fibers disappeared. The perimeter of the glioblasts, especially terminal webs, was hemmed presumably by actin and made contact with the substratum.  相似文献   

8.
Mark D. Lazzaro 《Protoplasma》1998,201(3-4):194-201
Summary In conifer pollen, the generative cell divides into a sterile stalk cell and a body cell, which subsequently divides to produce two sperm. InPicea abies (Norway spruce, Pinaceae) this spermatogenous body cell contains actin microfilaments. Microfilament bundles follow the spherical contour of the body cell within the cell cortex, and also traverse the cytoplasm and enmesh amyloplasts and other organelles. In addition, microfilaments are associated with the surface of the body cell nucleus. The sterile stalk cell also contains microfilament bundles in the cytoplasm, around organelles, and along the nuclear surface. Within the pollen grain, microfilament bundles traverse the vegetative-cell cytoplasm and are enriched in a webbed cage which surrounds the body cell. Microfilaments were identified with rhodamine-phalloidin and with indirect immunofluo-rescence using a monoclonal antibody to actin. The majority of evidence in literature suggests that the spermatogenous generative cell in angiosperms does not contain actin microfilaments, so the presence of microfilaments within the spermatogenous body cell inP. abies appears to be a fundamental difference in sexual reproduction between conifers and angiosperms.  相似文献   

9.
The amount of actin and total protein per cell in normal rat kidney (NRK) cells in culture is initially high in very low density cultures, but rapidly decreases as the cells come into contact in higher density cultures. In a viral transformant of NRK (442), the level of actin and total protein does not change significantly from low to high density cultures. NRK cells, which are flattened against the substrate, have prominent bundles of actinlike microfilaments in the basal cytoplasm adjacent to the substrate. 442 cells, which adhere poorly and are more spherical in shape, lack well-organized basal microfilament bundles, but may display microfilament bundles in cytoplasmic processes extending from the cell body. The percentage of insoluble actin is less than 20% in both cell lines, and 442 cells consistently contain smaller amounts than NRK cells.  相似文献   

10.
Programmed cell death (PCD) involves precise integration of cellular responses to extracellular and intracellular signals during both stress and development. In recent years much progress in our understanding of the components involved in PCD in plants has been made. Signalling to PCD results in major reorganisation of cellular components. The plant cytoskeleton is known to play a major role in cellular organisation, and reorganization and alterations in its dynamics is a well known consequence of signalling. There are considerable data that the plant cytoskeleton is reorganised in response to PCD, with remodelling of both microtubules and microfilaments taking place. In the majority of cases, the microtubule network depolymerises, whereas remodelling of microfilaments can follow two scenarios, either being depolymerised and then forming stable foci, or forming distinct bundles and then depolymerising. Evidence is accumulating that demonstrate that these cytoskeletal alterations are not just a consequence of signals mediating PCD, but that they also may have an active role in the initiation and regulation of PCD. Here we review key data from higher plant model systems on the roles of the actin filaments and microtubules during PCD and discuss proteins potentially implicated in regulating these alterations.  相似文献   

11.
The retinal pigmented epithelium (RPE) is a simple cuboidal epithelium with apical processes which, unlike many epithelia, do not extend freely into a lumen but rather interdigitate closely with the outer segments of the neural retina. To determine whether this close association was reflected in the cytoskeletal organization of the RPE, we studied the components of the cytoskeleton of the RPE and their localization in the body of the cell and in the apical processes. By relative mobility on SDS gels and by immunoblotting, we identified actin, vimentin, myosin, spectrin (240/235), and alpha-actinin as major components, and vinculin as a minor component. In addition, the RPE cytoskeleton contains polypeptides of Mr 280,000 and 250,000; the latter co-electrophoreses with actin-binding protein. By immunofluorescence, the terminal web region appeared similar to the comparable region of the intestinal epithelium that consists of broad belts of microfilaments containing myosin, actin, spectrin, and alpha-actinin. However, the components of the apical processes were very different from those of intestinal microvilli. We observed staining along the process for myosin, actin, spectrin, alpha-actinin, and vinculin. The presence in the apical processes of contractile proteins and also of proteins typically found at sites of cell attachments suggests that the RPE may actively adhere to, and exert tension on, the neural retina.  相似文献   

12.
In S334ter-line-3 rat model of Retinitis Pigmentosa (RP), rod cell death induces the rearrangement of cones into mosaics of rings while the fibrotic processes of Müller cells remodel to fill the center of the rings. In contrast, previous work established that DL-alpha-aminoadipic-acid (AAA), a compound that transiently blocks Müller cell metabolism, abolishes these highly structured cone rings. Simultaneously, adherens-junction associated protein, Zonula occludens-1 (ZO-1) expression forms in a network between the photoreceptor segments and Müller cells processes. Thus, we hypothesized that AAA treatment alters the cone mosaic rings by disrupting the distal sealing formed by these fibrotic processes, either directly or indirectly, by down regulating the expression of ZO-1. Therefore, we examined these processes and ZO-1 expression at the outer retina after intravitreal injection of AAA and observed that AAA treatment transiently disrupts the distal glial sealing in RP retina, plus induces cones in rings to become more homogeneous. Moreover, ZO-1 expression is actively suppressed after 3 days of AAA treatment, which coincided with cone ring disruption. Similar modifications of glial sealing and cone distribution were observed after injection of siRNA to inhibit ZO-1 expression. These findings support our hypothesis and provide additional information about the critical role played by ZO-1 in glial sealing and shaping the ring mosaic in RP retina. These studies represent important advancements in the understanding of retinal degeneration’s etiology and pathophysiology.  相似文献   

13.
Summary The organization of the submembrane cytoskeleton of non-photoreceptive, accessory cells in the honeybee compound eye was examined using light-microscopic (phallotoxin labeling, immunohistochemistry) and electron-microscopic (decoration with myosin fragments) techniques. The crystalline cone cells contain numerous peripheral actin filaments oriented longitudinally with antiparallel polarity. Bundles of microtubules lie under the plasma membrane of primary pigment cells, in close apposition to the crystalline cone; they are interspersed with only a few actin filaments. Pigmented glial cells (secondary pigment cells) contain a two-dimensional filament/particle web lining their entire plasma membranes. Both filamentous actin and -spectrin are localized within the cortex of these cells, indicating that they are web components. The results demonstrate that the three cell types contain different cortical cytoskeletons, implying different functional properties.  相似文献   

14.
Previous studies (Holmes, K.V., and P.W. Choppin. J. Exp. Med. 124:501- 520; J. Cell Biol. 39:526-543) showed that infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes extensive cell fusion, that nuclei migrate in the syncytial cytoplasm and align in tightly-packed rows, and that microtubules are involved in nuclear movement and alignment. The role of microtubules, 10-nm filaments, and actin-containing microfilaments in this process has been investigated by immunofluorescence microscopy using specific antisera, time-lapse cinematography, and electron microscopy. During cell fusion, micro tubules and 10-nm filaments from many cells form large bundles which are localized between rows of nuclei. No organized bundles of actin fibers were detected in these areas, although actin fibers were observed in regions away from the aligned nuclei. Although colchicine disrupts microtubules and inhibits nuclear movement, cytochalasin B (CB; 20-50 microgram/ml) does not inhibit cell fusion or nuclear movement. However, CB alters the shape of the syncytium, resulting in long filamentous processes extending from a central region. When these processes from neighboring cells make contact, fusion occurs, and nuclei migrate through the channels which are formed. Electron and immunofluorescence microscopy reveal bundles of microtubules and 10-nm filaments in parallel arrays within these processes, but no bundles of microfilaments were detected. The effect of CB on the structural integrity of microfilaments at this high concentration (20 microgram/ml) was demonstrated by the disappearance of filaments interacting with heavy meromyosin. Cycloheximide (20 microgram/ml) inhibits protein synthesis but does not affect cell fusion, the formation of microtubules and 10-nm filament bundles, or nuclear migration and alignment; thus, continued protein synthesis is not required. The association of microtubules and 10-nm filaments with nuclear migration and alignment suggests that microtubules and 10-nm filaments are two components in a system which serves both cytoskeletal and force-generating functions in intracellular movement and position of nuclei.  相似文献   

15.
Summary Actin microfilaments in isolated root-tip cells from wheat (Triticum aestivum L. cv. Kite) were visualized by immunofluorescence microscopy using two different antiactin monoclonal antibodies. Cells in interphase contain predominantly subcortical bundles of microfilaments, as described in many cell types, but in preprophase and prophase cells, immunodetectable actin is organized solely in ordered arrays of cortical microfilaments that cover the entire surface of the cell, transverse on lateral faces, random on end walls. Intermediate stages with random and transverse microfilaments are also seen on lateral faces. The cell cycle stage-dependent transverse cortical microfilaments described here are previously unreported in higher plant cells.Abbreviations Ig immunoglobulin - MF microfilament  相似文献   

16.
Polygonal networks in cultured chick endoderm cells are ordered arrays of actin microfilaments situated just beneath the dorsal cell surface. Each strut is formed from a bundle of microfilaments and 5-7 bundles intersect at each node. Dense bodies are seen in nodes and some struts. At its periphery the network is attached to the substrate at the termini of long radial struts. Most of the network is resistant to detergent extraction. Sliding microfilaments can explain the observed behaviour of networks in live cells.  相似文献   

17.
Growth cones at the distal tips of growing nerve axons contain bundles of actin filaments distributed throughout the lamellipodium and that project into filopodia. The regulation of actin bundling by specific actin binding proteins is likely to play an important role in many growth cone behaviors. Although the actin binding protein, fascin, has been localized in growth cones, little information is available on its functional significance. We used the large growth cones of the snail Helisoma to determine whether fascin was involved in temporal changes in actin filaments during growth cone morphogenesis. Fascin localized to radially oriented actin bundles in lamellipodia (ribs) and filopodia. Using a fascin antibody and a GFP fascin construct, we found that fascin incorporated into actin bundles from the beginning of growth cone formation at the cut end of axons. Fascin associated with most of the actin bundle except the proximal 6--12% adjacent to the central domain, which is the region associated with actin disassembly. Later, during growth cone morphogenesis when actin ribs shortened, the proximal fascin-free zone of bundles increased, but fascin was retained in the distal, filopodial portion of bundles. Treatment with tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), which phosphorylates fascin and decreases its affinity for actin, resulted in loss of all actin bundles from growth cones. Our findings suggest that fascin may be particularly important for the linear structure and dynamics of filopodia and for lamellipodial rib dynamics by regulating filament organization in bundles.  相似文献   

18.
Amebas of Dictyostelium discoideum contain both microfilaments and microtubules. Microfilaments, found primarily in a cortical filament network, aggregate into bundles when glycerinated cells contract in response to Mg-ATP. These cortical filaments bind heavy meromyosin. Microtubules are sparse in amebas before aggregation. Colchicine, griseofulvin, or cold treatments do not affect cell motility or cell shape. Saltatory movement of cytoplasmic particles is inhibited by these treatments and the particles subsequently accumulate in the posterior of the cell. Cell motility rate changes as Dicytostelium amebas go through different stages of the life cycle. Quantitation of cellular actin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that the quantity of cellular actin changes during the life cycle. These changes in actin are directly correlated with changes in motility rate. Addition of cyclic AMP to Dictyostelium cultures at the end of the feeding stage prevents a decline in motility rate during the preaggregation stage. Cyclic AMP also modifies the change in actin content of the cells during preaggregation.  相似文献   

19.
Transmission electron microscopy and serial reconstruction of lum sections were used to determine whether aligned extracellular channels precede the outgrowth of optic fibers in the embryonic chick retina. At stage 16, just prior to the migration of optic axons toward the optic stalk, extracellular spaces bounded by neuroepithelial cell processes, in the superficial (vitread) region of the retina, were aligned toward the optic stalk. The optic axons subsequently entered and grew within these spaces. After formation of the ganglion cell fiber layer (GCFL), the growth cones of new optic axons entered the most vitread portion of that layer. Hypertonic fixatives caused shrinkage of cell processes, resulting in intercellular separation. However, growth cone filopodia retained close contacts with neighboring glial cell endfeet and with optic axons in these solutions. This suggests that growth cones may be adherent to these structures. Transmission electron microscopy in conjunction with the use of hypertonic solutions may become a useful technique for assaying intercellular adhesivity.  相似文献   

20.
Antitubulin, phalloidin, and antimyosin were used to study the distribution of microtubules, microfilaments, and myofibrils in cultured adult cardiomyocytes. These cells undergo a stereotypic sequence of morphological change in which myotypic features are lost and then reconstructed during a period of polymorphic growth. Microtubules, though rearranged during these events in culture, are always present in an organized network. Myosin and actin structures, on the other hand, initially degenerate. This initial degeneration is reversed when a cell attaches to the culture substratum. Upon attachment, new microtubules are laid down as a cortical network adjacent to the sarcolemma and, subsequently, as a network in the basal part of the cell. Actin and then myosin filament bundles appear next, in a pattern corresponding to the pattern of the microtubules. Finally, striated myofibrils are formed, first in the central part of the cell, and subsequently in the outgrowing processes of the cell. A mechanism is suggested by which the eventual polymorphic shape of a cell is related to the shape of its initial area of contact with the culture substratum. Finally, a model of myofibrillogenesis is proposed in which microtubules participate in the insertion of myosin among previously formed actin filament bundles to produce myofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号