首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carboxylic ester hydrolases from hyperthermophiles   总被引:1,自引:0,他引:1  
Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the latter group often exhibit a high intrinsic stability, which makes them of interest them for various biotechnological applications. In this review, we aim to give an overview of all characterized carboxylic ester hydrolases from hyperthermophilic microorganisms and provide details on their substrate specificity, kinetics, optimal catalytic conditions, and stability. Approaches for the discovery of new carboxylic ester hydrolases are described. Special attention is given to the currently characterized hyperthermophilic enzymes with respect to their biochemical properties, 3D structure, and classification.  相似文献   

3.
Hyperthermophiles are characterized by a temperature optimum for growth between 80 and 110°C. They are considered to represent the most ancient phenotype of living organisms and thus their metabolic design might reflect the situation at an early stage of evolution. Their modes of metabolism are diverse and include chemolithoautotrophic and chemoorganoheterotrophic. No extant phototrophic hyperthermophiles are known. Lithotrophic energy metabolism is mostly anaerobic or microaerophilic and based on the oxidation of H2 or S coupled to the reduction of S, SO inf4 sup2- , CO2 and NO inf3 sup- but rarely to O2. the substrates are derived from volcanic activities in hyperthermophilic habitats. The lithotrophic energy metabolism of hyperthermophiles appears to be similar to that of mesophiles. Autotrophic CO2 fixation proceeds via the reductive citric acid cycle, considered to be one of the first metabolic cycles, and via the reductive acetyl-CoA/carbon monoxide dehydrogenase pathway. The Calvin cycle has not been found in hyperthermophiles (or any Archaea). Organotrophic metabolism mainly involves peptides and sugars as substrates, which are either oxidized to CO2 by external electron acceptors or fermented to acetate and other products. Sugar catabolism in hyperthermophiles involves non-phosphorylated versions of the Entner-Doudoroff pathway and modified versions of the Embden-Meyerhof pathway. The classical Embden-Meyerhof pathway is present in hyperthermophilic Bacteria (Thermotoga) but not in Archaea. All hyperthermophiles (and Archaea) tested so far utilize pyruvate:ferredoxin oxidoreductase for acetyl-CoA formation from pyruvate. Acetyl-CoA oxidation in anaerobic sulphur-reducing and aerobic hyperthermophiles proceeds via the citric acid cycle; in the hyperthermophilic sulphate-reducer Archaeoglobus an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway is operative. Acetate formation from acetyl-CoA in Archaea, including hyperthermophiles, is catalysed by acetyl-CoA synthetase (ADP-forming), a novel prokarvotic enzyme involved in energy conservation. In Bacteria, including the hyperthermophile Thermotoga, acetyl-CoA conversion to acetate involves two enzymes, phosphate acetyltransferase and acetate kinase.The authors are with the Institut für Pflanzenphysiologie und Mikrobiologie. Fachbereich Biologie, Freie Universität Berlin, Königin-Luise-Strasse 12–16 a, D-14195 Berlin, Germany  相似文献   

4.
5.
Further clarification of the adaptations permitting the persistence of life at temperatures above 100 degrees C depends in part on the analysis of adaptive mechanisms at the protein level. The hyperthermophiles include both Bacteria and Archaea, although the majority of isolates growing at or above 100 degrees C are Archaea. Newly described adaptive features of hyperthermophiles include proteins whose structural integrity persists at temperatures up to 200 degrees C, and under elevated hydrostatic pressure, which in some cases adds significant increments of stability.  相似文献   

6.
RecG helicase activity at three- and four-strand DNA structures.   总被引:9,自引:3,他引:6       下载免费PDF全文
The RecG helicase of Escherichia coli is necessary for efficient recombination and repair of DNA in vivo and has been shown to catalyse the unwinding of DNA junctions in vitro. Despite these findings, the precise role of RecG remains elusive. However, models have been proposed in which RecG promotes the resolution of linked duplexes by targeting three-strand junctions present at D-loops. One such model postulates that RecG catalyses the formation of four-strand (Holliday) junctions from three-strand junctions. To test this model, the DNA binding and unwinding activities of RecG were analysed using synthetic three- and four-strand junctions. The substrate specificity of RecG was found to depend critically on the concentrations of ATP and MgCl(2)and under certain conditions RecG preferentially unwound three-strand junction DNA. This was at least partly due to the larger inhibitory effect of MgCl(2)on the binding of four-strand as opposed to three-strand junctions by RecG. Thus RecG may be targeted to three-strand junctions in vivo whilst still being able to branch migrate the four-strand junctions formed as a result of the initial helicase reaction. The increase in the dissociation constant of RecG on conversion of a three-strand into a four-strand junction may also facilitate resolution of the four-strand junction by the RuvABC complex.  相似文献   

7.
8.
摘要 来源于超嗜热菌的超嗜热羧酸酯酶,结构上与激素敏感性脂肪酶(HSL)家族近似,属于α/β-水解酶,但是其空间结构比HSL更加紧密而有韧性,具有很强的热稳定性。性质研究表明,温度和有机溶剂对超嗜热羧酸酯酶的活性和对映选择性影响显著;其最适底物一般是对硝基苯酯,部分酯酶的基因含有GGGX基序,能够水解叔醇酯结构。由于超嗜热羧酸酯酶的独特结构和性质,其应用潜力巨大,尤其在拆分手性的外消旋酯方面独具优势。  相似文献   

9.

Background

DNA microarrays are among the most widely used technical platforms for DNA and RNA studies, and issues related to microarrays sensitivity and specificity are therefore of general importance in life sciences. Compatible solutes are derived from hyperthermophilic microorganisms and allow such microorganisms to survive in environmental and stressful conditions. Compatible solutes show stabilization effects towards biological macromolecules, including DNA.

Results

We report here that compatible solutes from hyperthermophiles increased the performance of the hybridization buffer for Affymetrix GeneChip® arrays. The experimental setup included independent hybridizations with constant RNA over a wide range of compatible solute concentrations. The dependence of array quality and compatible solute was assessed using specialized statistical tools provided by both the proprietary Affymetrix quality control system and the open source Bioconductor suite.

Conclusion

Low concentration (10 to 25 mM) of hydroxyectoine, potassium mannosylglycerate and potassium diglycerol phosphate in hybridization buffer positively affected hybridization parameters and enhanced microarrays outcome. This finding harbours a strong potential for the improvement of DNA microarray experiments.  相似文献   

10.
Sugar metabolism of hyperthermophiles   总被引:5,自引:0,他引:5  
Abstract: In recent years a number of hyperthermophiles with the ability to utilize sugars as source for carbon and energy have been isolated. Analysis of their central metabolism may reveal adaptations to the extreme environment, or give information about the evolution of the primary pathways involved. The best studied representative is Pyrococcus furiosus , which has become the model organism of the heterotrophic hyperthermophiles. This deeply branched archaeon utilizes a modified Embden-Meyerhof Pathway, which involves a set of unprecedented ADP-dependent kinases, and a unique glyceraldehyde-3-phosphate: ferredoxin oxidoreductase. Moreover, pyruvate is converted via acetyl-CoA to acetate, involving an ADP-forming acetyl-CoA synthetase, which is not encountered in Bacteria. Reductant generated by ferrodoxin-linked enzymes is released either by S0-reduction to H2S, by proton reduction to H2 or by the formation of alanine. Yield studies suggest that in addition to ATP synthesis by substrate level phosphorylation in the ultimate acetate-forming step, there are alternative energy conserving systems. The ADP-dependent Embden-Meyerhof pathway is probably shared by other members of the Thermococcales . In contrast, an ATP-dependent Embden-Meyerhof pathway is operating in the S0-respiring archaeon Thermoproteus tenax , although it involves a PPi-dependent phosphofructokinase. Finally, hyperthermophilic bacteria such as Thermotoga maritima utilize a classical Embden-Meyerhof pathway. Thus, the presence of the different versions of the Embden-Meyerhof pathway in these deeply rooted microbes indicates that the hypothesis that the Entner-Doudoroff pathway is more primitive is not correct.  相似文献   

11.
Peptide tags containing tyrosines (Y-tag) were introduced at the C-terminus of a hyperthermophilic enzyme, alkaline phosphatase from Pyrococcus furiosus (PfuAP). Immobilization of the recombinant PfuAPs onto water-in-oil-in-water (W/O/W) type microcapsules was performed by an in situ polymerization method. All the recombinant PfuAPs prepared in this study were quantitatively immobilized onto microcapsules. The PfuAP-immobilized microcapsules showed no significant loss of enzymatic activity until the 5th round of assays. This result implies that the recombinant PfuAPs were covalently immobilized onto microcapsules. Immobilized PfuAP tagged with a Y-tag having the sequence GGYYY exhibited approximately a twofold higher catalytic activity compared with the wild-type PfuAP. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
History of discovery of the first hyperthermophiles   总被引:2,自引:0,他引:2  
Hyperthermophiles, growing optimally at 80°C and above had been discovered in 1981. They represent the upper temperature border of life and are found within high temperature environments. In their basically anaerobic surroundings, they gain energy mainly by inorganic redox reactions. Within the phylogenetic tree, hyperthermophiles occupy all the short deep branches closest to the root. The earliest archaeal phylogenetic lineage is represented by the extremely tiny members of the novel kingdom of Nanoarchaeota.  相似文献   

13.
Genomes of various hyperthermophilic and extremely thermophilic prokaryotes were analyzed with respect to size, physical organization, and 16S rDNA copy number. Our results show that all the genomes are circular, and they are in the size range of 1.6–1.8 Mb for Pyrodictium abyssi, Methanococcus igneus, Pyrobaculum aerophilum, Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, and Archaeoglobus profundus (the two bacteria Fervidobacterium islandicum and Thermosipho africanus possess genomes of 1.5-Mb size). A systematic study of all validly described species of the order Sulfolobales revealed the existence of two classes of genome size for these archaea, correlating with phylogenetic analyses. The Metallosphaera–Acidianus group, plus Sulfolobus metallicus, have genomes of ca. 1.9 Mb; the other members of the order Sulfolobales group possess genomes >2.7 Mb. The special case of Stygiolobus azoricus is discussed. Received: August 10, 1997 / Accepted: January 1, 1998  相似文献   

14.
Enzymes from hyperthermophiles display extreme (thermo)stability and a wide range of enzymes have been examined to explore their potential for various biotechnological processes. In addition, recent years have witnessed the development of genetic systems in a number of hyperthermophilic archaea. This has provided the means to initiate cell engineering studies in these organisms. Biofuel production is now an important topic in microbial biotechnology, and the hydrogen producing capabilities of (hyper)thermophiles, as well as their thermostable hydrogenases, are now attracting much attention.  相似文献   

15.
Food-borne drug-resistant bacteria have adverse impacts on both food manufacturers and consumers. Disillusionment with the efficacy of current preservatives and antibiotics for controlling food-borne pathogens, especially drug-resistant bacteria, has led to a search for safer alternatives from natural sources. Spirulina have been recognized as a food supplement, natural colorant, and enriched source of bioactive secondary metabolites. The main objectives of this study were to isolate polyphenolic compounds from Spirulina and analyze their antibacterial potential against drug-resistant food-borne bacterial pathogens. We found that fraction B of methanol extract contained a high quantity of polyphenols exhibiting broad spectrum antimicrobial effects against drug-resistant food-borne bacterial pathogens. Potential secondary metabolites, such as benzophenone, dihydro-methyl-phenylacridine, carbanilic acid, dinitrobenzoate, propanediamine, isoquinoline, piperidin, oxazolidin, and pyrrolidine, were identified by gas chromatography and mass spectrophotometry (GCMS). These metabolites are active against both gram-positive and gram-negative pathogens. Our work suggests that phenolic compounds from Spirulina provide a natural and sustainable source of food preservatives for future use.  相似文献   

16.
Improved antimicrobial therapies against the classical spectrum of pathogenic bacteria which colonise the lungs of cystic fibrosis (CF) patients has resulted in improved life expectancy and quality of life. Bacterial species that are resistant to a broad range of antibiotics including Stenotrophomonas maltophilia and Alcaligenes xylosoxidans have now emerged as potential new pathogens to fill the niche. At present, it is unclear from clinical data whether these microbes are commensal or pathogenic. In this study we have quantified the inflammatory potential of lipopolysaccharide (LPS) from eight species of Gram-negative organisms which have been cultured with increasing frequency from CF patients. Inflammatory responses induced by LPS from whole human blood and a human-derived monocyte cell line (THP-1) were assessed. Enzyme-linked immunosorbent assays were used to detect interleukin-6, interleukin-8, and tumour necrosis factor alpha (TNF). A bioassay was also used to assess TNF activity. With the exception of S. maltophilia, LPS extracted from all of the bacteria tested upregulated, by varying degrees, expression of each of the proinflammatory cytokines assayed. This study represents the first comprehensive report of the endotoxic potential of a new wave of microbes which are associated with CF.  相似文献   

17.
Pyrrolidone carboxyl peptidases (PCPs) from hyperthermophiles have a structurally conserved and completely buried Glu192 in the hydrophobic core; in contrast, the corresponding residue in the mesophile protein is a hydrophobic residue, Ile. Does the buried ionizable residue contribute to stabilization or destabilization of hyperthermophile PCPs? To elucidate the role of the buried glutamic acid in stabilizing PCP from hyperthermophiles, we constructed five Glu192 mutants of PCP-0SH (C142S/C188S, Cys-free double mutant of PCP) from Pyrococcus furiosus and examined their thermal and pH-induced unfolding and crystal structures and compared them with those of PCP-0SH. The stabilities of apolar (E192A/I/V) and polar (E192D/Q) mutants were less than PCP-0SH at acidic pH values. In the alkaline region, the mutant proteins, except for E192D, were more stable than PCP-0SH. The thermal stability data and theoretical calculations indicated an apparent pKa value > or = 7.3 for Glu192. Present results confirmed that the protonated Glu192 in PCP-0SH forms strong hydrogen bonds with the carbonyl oxygen and peptide nitrogen of Pro168. New intermolecular hydrogen bonds in the E --> A/D mutants were formed by a water molecule introduced into the cavity created around position 192, whereas the hydrogen bonds disappeared in the E --> I/V mutants. Structure-based empirical stability of mutant proteins was in good agreement with the experimental results. The results indicated that (1) completely buried Glu192 contributes to the stabilization of PCP-0SH because of the formation of strong intramolecular hydrogen bonds and (2) the hydrogen bonds by the nonionized and buried Glu can contribute more than the burial of hydrophobic groups to the conformational stability of proteins.  相似文献   

18.
BackgroundThe RecG DNA helicase plays a crucial role in stalled replication fork rescue. We have recently discovered that interaction of RecG with single-strand DNA binding protein (SSB) remodels RecG, allowing it to spontaneously translocate upstream of the fork. Based on these findings, we hypothesized that mispairing of DNA could limit such translocation of RecG.MethodsHere, we used atomic force microscopy (AFM) to directly test this hypothesis and investigate how sensitive RecG translocation is to different types of mispairing.ResultsWe found that a CC mispairing, at a distance of 30 bp from the fork position, prevents translocation of RecG over this mispairing. A G-bulge, placed at the same distance, also has a similar blocking efficiency. However, a CC mispairing, 10 bp away from the fork, does not prevent RecG translocation beyond 10 bp distance, but decreases complex yield. Modeling of RecG-DNA complexes show that 10 bp distance from the fork is within the binding footprint of RecG on DNA.ConclusionsOur results suggest that the RecG translocation upstream of the replication fork is limited by mispairings in the parental arm of the replication fork.General significanceThese findings led us to propose dual functions for RecG, in which the thermally driven translocation of RecG can be a mechanism for the additional control of the DNA paring in which RecG can detect the lesions in front of the replication fork, adding to the fidelity of the DNA replication machinery.  相似文献   

19.
Transfer of DNA has been shown to be involved in genome evolution. In particular with respect to the adaptation of bacterial species to high temperatures, DNA transfer between the domains of bacteria and archaea seems to have played a major role. In addition, DNA exchange between similar species likely plays a role in repair of DNA via homologous recombination, a process that is crucial under DNA damaging conditions such as high temperatures. Several mechanisms for the transfer of DNA have been described in prokaryotes, emphasizing its general importance. However, until recently, not much was known about this process in prokaryotes growing in highly thermophilic environments. This review describes the different mechanisms of DNA transfer in hyperthermophiles, and how this may contribute to the survival and adaptation of hyperthermophilic archaea and bacteria to extreme environments.  相似文献   

20.
珍珠柴粗提物对13种植物病原菌的抑制活性   总被引:1,自引:0,他引:1  
任芳  刘强 《广西植物》2009,29(1):132-135
以生长速率法测定了珍珠柴7种溶剂粗提物对棉花黄萎病菌V991、棉花黄萎病菌V43-1、棉花枯萎病菌、茄子黄萎病菌、稻曲病病菌、苹果黑星病菌、番茄枯萎病菌、番茄叶霉病菌、黄瓜黑星病菌、西瓜炭疽病菌、芦笋茎枯病菌、扩展青霉和梨黑斑病菌13种植物病原菌的抑制活性。结果表明,不同溶剂粗提物的抑菌活性差异很大,某些溶剂粗提物对个别病菌表现出较强的抑制作用,如水粗提物对棉花黄萎病菌V991,石油醚粗提物对苹果黑星病菌的抑制率分别达100%和91.89%;有的溶剂粗提物的病菌抑制作用较弱,如二氯甲烷粗提物对13种病菌的抑菌率均较低;有些还表现出一定的促进生长作用,如甲醇粗提物对梨黑斑病菌表现为明显的促进生长作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号