首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The incorporation of unsaturated acyl chains into phospholipids during de novo synthesis is primarily mediated by the 1-acyl-sn-glycerol-3-phosphate acyltransferase reaction. In Saccharomyces cerevisiae, Slc1 has been shown to mediate this reaction, but distinct activity remains after its removal from the genome. To identify the enzyme that mediates the remaining activity, we performed synthetic genetic array analysis using a slc1Delta strain. One of the genes identified by the screen, LPT1, was found to encode for an acyltransferase that uses a variety of lysophospholipid species, including 1-acyl-sn-glycerol-3-phosphate. Deletion of LPT1 had a minimal effect on 1-acyl-sn-glycerol-3-phosphate acyltransferase activity, but overexpression increased activity 7-fold. Deletion of LPT1 abrogated the esterification of other lysophospholipids, and overexpression increased lysophosphatidylcholine acyltransferase activity 7-fold. The majority of this activity co-purified with microsomes. To test the putative role for this enzyme in selectively incorporating unsaturated acyl chains into phospholipids in vitro, substrate concentration series experiments were performed with the four acyl-CoA species commonly found in yeast. Although the saturated palmitoyl-CoA and stearoyl-CoA showed a lower apparent Km, the monounsaturated palmitoleoyl-CoA and oleoyl-CoA showed a higher apparent Vmax. Arachidonyl-CoA, although not abundant in yeast, also had a high apparent Vmax. Pulse-labeling of lpt1Delta strains showed a 30% reduction in [3H]oleate incorporation into phosphatidylcholine only. Therefore, Lpt1p, a member of the membrane-bound o-acyltransferase gene family, seems to work in conjunction with Slc1 to mediate the incorporation of unsaturated acyl chains into the sn-2 position of phospholipids.  相似文献   

2.
A mutant of Escherichia coli K-12 defective in 1-acyl-sn-glycerol-3-phosphate acyltransferase has been isolated. At the permissive temperature for growth, 30 degrees C, 20% of the total cellular glycerophospholipids is 1-acyl-sn-glycerol-3-phosphate, as identified by mass spectral analysis and proton NMR. This percentage of 1-acyl-sn-glycerol-3-phosphate rises to about 30% when the temperature of the culture is shifted to 42 degrees C. This increase is primarily at the expense of phosphatidylethanolamine. Extracts from cells harboring the plsC mutation have no detectable 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. The fatty acid composition of the accumulated 1-acyl-sn-glycerol-3-phosphate is about 60% cis-vaccenate and 40% palmitate, with no detectable amounts of palmitoleate or other fatty acids, consistent with the known fatty acid composition of the sn-1 position of glycerophospholipids. The isolation of this gene, plsC, completes the list of genes known to be required for the synthesis of the major glycerophospholipids in E. coli.  相似文献   

3.
In yeast, phosphatidic acid, the biosynthetic precursor for all glycerophospholipids and triacylglycerols, is made de novo by the 1-acyl-sn-glycerol-3-phosphate acyltransferases Ale1p and Slc1p. Ale1p belongs to the membrane-bound O-acyltransferase (MBOAT) family, which contains many enzymes acylating lipids but also others that acylate secretory proteins residing in the lumen of the ER. A histidine present in a very short loop between two predicted transmembrane domains is the only residue that is conserved throughout the MBOAT gene family. The yeast MBOAT proteins of known function comprise Ale1p, the ergosterol acyltransferases Are1p and Are2p, and Gup1p, the last of which acylates lysophosphatidylinositol moieties of GPI anchors on ER lumenal GPI proteins. C-terminal topology reporters added to truncated versions of Gup1p yield a topology predicting a lumenal location of its uniquely conserved histidine 447 residue. The same approach shows that Ale1p and Are2p also have the uniquely conserved histidine residing in the ER lumen. Because these data raised the possibility that phosphatidic acid could be made in the lumen of the ER, we further investigated the topology of the second yeast 1-acyl-sn-glycerol-3-phosphate acyltransferase, Slc1p. The location of C-terminal topology reporters, microsomal assays probing the protease sensitivity of inserted tags, and the accessibility of natural or artificially inserted cysteines to membrane-impermeant alkylating agents all indicate that the most conserved motif containing the presumed active site histidine of Slc1p is oriented toward the ER lumen, whereas other conserved motifs are cytosolic. The implications of these findings are discussed.  相似文献   

4.
Acyl-CoA:lysophospholipid acyltransferases   总被引:1,自引:0,他引:1  
Cell membranes contain several classes of glycerophospholipids, which have numerous structural and functional roles in the cells. Polyunsaturated fatty acids, including arachidonic acid and eicosapentaenoic acid, are located at the sn-2 (but not sn-1)-position of glycerophospholipids in an asymmetrical manner. Using acyl-CoAs as donors, glycerophospholipids are formed by a de novo pathway (Kennedy pathway) and modified by a remodeling pathway (Lands' cycle) to generate membrane asymmetry and diversity. Both pathways were reported in the 1950s. Whereas enzymes involved in the Kennedy pathway have been well characterized, including enzymes in the 1-acylglycerol-3-phosphate O-acyltransferase family, little is known about enzymes involved in the Lands' cycle. Recently, several laboratories, including ours, isolated enzymes working in the remodeling pathway. These enzymes were discovered not only in the 1-acylglycerol-3-phosphate O-acyltransferase family but also in the membrane-bound O-acyltransferase family. In this review, we summarize recent studies on cloning and characterization of lysophospholipid acyltransferases that contribute to membrane asymmetry and diversity.  相似文献   

5.
In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of phosphatidic acid (K. Athenstaedt and G. Daum, J. Bacteriol. 179:7611-7616, 1997). Using the gat1 mutant strain TTA1, we show here that Gat1p present in both subcellular fractions accepts glycerol-3-phosphate and dihydroxyacetone phosphate as a substrate. Similarly, the additional acyltransferase(s) present in the endoplasmic reticulum can acylate both precursors. In contrast, yeast mitochondria harbor an enzyme(s) that significantly prefers dihydroxyacetone phosphate as a substrate for acylation, suggesting that at least one additional independent acyltransferase is present in this organelle. Surprisingly, enzymatic activity of 1-acyldihydroxyacetone phosphate reductase, which is required for the conversion of 1-acyldihydroxyacetone phosphate to 1-acylglycerol-3-phosphate (lysophosphatidic acid), is detectable only in lipid particles and the endoplasmic reticulum and not in mitochondria. In vivo labeling of wild-type cells with [2-3H, U-14C]glycerol revealed that both glycerol-3-phosphate and dihydroxyacetone phosphate can be incorporated as a backbone of glycerolipids. In the gat1 mutant and the 1-acylglycerol-3-phosphate acyltransferase slc1 mutant, the dihydroxyacetone phosphate pathway of phosphatidic acid biosynthesis is slightly preferred as compared to the wild type. Thus, mutations of the major acyltransferases Gat1p and Slc1p lead to an increased contribution of mitochondrial acyltransferase(s) to glycerolipid synthesis due to their substrate preference for dihydroxyacetone phosphate.  相似文献   

6.
The plsC gene of Escherichia coli encoding sn-1-acylglycerol-3-phosphate acyltransferase was modified by inserting an endoplasmic reticulum retrieval signal to its 3 end and introduced into rapeseed (Brassica napus L.) plants under the control of a napin promotor. In developing seeds from transgenic plants an sn-1-acylglycerol-3-phosphate acyltransferase activity was detectable which showed substrate specificities typical of the E. coli enzyme. Moreover, seed oil from the transformants unlike that from untransformed plants contained substantial amounts of triacylglycerol species esterified with very-long-chain fatty acids at each glycerol position. Analysis of fatty acids at the sn-2 position of triacylglycerol showed hardly any very-long-chain fatty acids in untransformed plants, but in certain transformants these fatty acids were present, namely about 4% erucic acid and 9% eicosenoic acid. These data demonstrate that the bacterial acyltransferase can function in developing rapeseed and alters the stereochemical composition of transgenic rape seed oil by directing very-long-chain fatty acids, especially cis-11 eicosenoic acid, to its sn-2 position.  相似文献   

7.
Loss-of-function mutations in 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) 2 in humans and mice result in loss of both the white and brown adipose tissues from birth. AGPAT2 generates precursors for the synthesis of glycerophospholipids and triacylglycerols. Loss of adipose tissue, or lipodystrophy, results in hyperinsulinemia, diabetes mellitus, and severe hepatic steatosis. Here, we analyzed biochemical properties of human AGPAT2 and its close homolog, AGPAT1, and we studied their role in liver by transducing their expression via recombinant adenoviruses in Agpat2(-/-) mice. The in vitro substrate specificities of AGPAT1 and AGPAT2 are quite similar for lysophosphatidic acid and acyl-CoA. Protein homology modeling of both the AGPATs with glycerol-3-phosphate acyltransferase 1 (GPAT1) revealed that they have similar tertiary protein structure, which is consistent with their similar substrate specificities. When co-expressed, both isoforms co-localize to the endoplasmic reticulum. Despite such similarities, restoring AGPAT activity in liver by overexpression of either AGPAT1 or AGPAT2 in Agpat2(-/-) mice failed to ameliorate the hepatic steatosis. From these studies, we suggest that the role of AGPAT1 or AGPAT2 in liver lipogenesis is minimal and that accumulation of liver fat is primarily a consequence of insulin resistance and loss of adipose tissue in Agpat2(-/-) mice.  相似文献   

8.
The mitochondrial sn-glycerol-3-phosphate and 1-acyl-sn-glycerol-3-phosphate O-acyltransferases from potato tubers and pea leaves were investigated with respect to their intraorganelle localization, their positional and substrate specificities, and their fatty acid selectivities. In mitochondria from potato tubers both enzymes were found to be located in the outer membrane. The 1-acyl-sn-glycerol-3-phosphate O-acyltransferase of pea mitochondria showed the same intraorganelle localization whereas the sn-glycerol-3-phosphate O-acyltransferase behaved like a soluble protein of the intermembrane space. The sn-glycerol-3-phosphate O-acyltransferase of both potato and pea mitochondria used sn-glycerol-3-phosphate but not dihydroxyacetone phosphate as acyl acceptor and exclusively catalyzed the formation of 1-acyl-sn-glycerol-3-phosphate which subsequently served as substrate for the second acylation reaction at its C-2 position. Both acyltransferases of potato as well as pea mitochondria showed higher activities with acyl-CoA than with the corresponding acyl-(acyl carrier protein) thioesters. When different acyl-CoA thioesters were offered separately, the sn-glycerol-3-phosphate O-acyltransferase of potato mitochondria displayed no fatty acid specificity whereas the enzyme of pea mitochondria revealed one for saturated acyl groups. On the other hand, the mitochondrial 1-acyl-sn-glycerol-3-phosphate O-acyltransferases from both potato tubers and pea leaves were more active on unsaturated than on saturated acyl-CoA thioesters. Furthermore, these enzymes preferentially used oleoyl- and linoleoyl-CoA when they were offered in a mixture with saturated ones, although the fatty acid selectivity of the pea enzyme was less pronounced than that of the potato enzyme. The sn-glycerol-3-phosphate O-acyltransferase of potato mitochondria displayed a slight preference for saturated acyl groups.  相似文献   

9.
1. 1-Acyl-sn-glycerol-3-phosphorylcholine and 1-acyl-sn-glycerol-3-phosphate acyltransferase activities were characterized in rat salivary gland microsomes. 2. The acyl-CoA selectivities between these two kinds of lysophospholipid acyltransferase activities were very different. 3. When the three major glands were compared (parotid, submandibular, sublingual), they showed their own particular acyltransferase activity, but they had very similar in acyl-CoA selectivity. 4. Those observations were also compared in rat liver microsomes.  相似文献   

10.
The 1-Acylglycerolphosphate acyltransferase is crucial enzyme for synthesis of glycerolipids as well as triacylglylcerol biosynthesis in eukaryotes. Six members of 1-acyl-sn-glycerol-3-phosphate acyltransferase family in human have been described, which were AGPAT1, 2, 3, 4, 5 and 6. Here we report the cloning and characterization of another novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase member AGPAT7 (1-acyl-sn-glycerol-3-phosphate acyltransferase 7) gene, which was mapped to human chromosome 15q14. The AGPAT7 cDNA is 1898 bp in length, encoding a putative protein with 524 amino acid residues, which contains an acyltransferase domain in 123-234 aa. RT PCR amplification in 18 human tissues indicated that human AGPAT7 gene was widely expressed in uterus, thymus, pancreas, skeletal muscle, bladder, stomach, lung and testis. AGPAT7 protein was mainly localized to the endoplasmic reticulum (ER) in Hela cells.  相似文献   

11.
A putative yeast sn-2 acyltransferase gene (SLC1-1), reportedly a variant acyltransferase that suppresses a genetic defect in sphingolipid long-chain base biosynthesis, has been expressed in a yeast SLC deletion strain. The SLC1-1 gene product was shown in vitro to encode an sn-2 acyltransferase capable of acylating sn-1 oleoyl-lysophosphatidic acid, using a range of acyl-CoA thioesters, including 18:1-, 22:1-, and 24:0-CoAs. The SLC1-1 gene was introduced into Arabidopsis and a high erucic acid-containing Brassica napus cv Hero under the control of a constitutive (tandem cauliflower mosaic virus 35S) promoter. The resulting transgenic plants showed substantial increases of 8 to 48% in seed oil content (expressed on the basis of seed dry weight) and increases in both overall proportions and amounts of very-long-chain fatty acids in seed triacylglycerols (TAGs). Furthermore, the proportion of very-long-chain fatty acids found at the sn-2 position of TAGs was increased, and homogenates prepared from developing seeds of transformed plants exhibited elevated lysophosphatidic acid acyltransferase (EC 2.3.1.51) activity. Thus, the yeast sn-2 acyltransferase has been shown to encode a protein that can exhibit lysophosphatidic acid acyltransferase activity and that can be used to change total fatty acid content and composition as well as to alter the stereospecific acyl distribution of fatty acids in seed TAGs.  相似文献   

12.
Export of mitochondrially synthesized lysophosphatidic acid   总被引:1,自引:0,他引:1  
We have previously demonstrated that the properties of mitochondrial glycerophosphate acyltransferase are in keeping with the asymmetric distribution of fatty acids found in naturally occurring cell glycerophospholipids. We are now examining if mitochondria can export lysophosphatidic acid and if it is converted to other phospholipids by the microsomes. Rat liver mitochondria were incubated for 3 min with [2-3H]-sn-glycerol 3-phosphate, palmityl-CoA, and N-ethylmaleimide in the acyltransferase assay medium. In the absence of bovine serum albumin in the medium, greater than 80% of the phospholipids sedimented with the mitochondria. In the presence of the albumin, the lysophosphatidic acid was present entirely in the supernatant fluid. The very little phosphatidic acid that was formed sedimented with the mitochondria. Addition of microsomes to the supernatant fluid followed by a further incubation of 5 min converted 61% of the lysophosphatidic acid to phosphatidic acid which sedimented with the microsomes. When mitochondria and microsomes were incubated together in the assay medium containing albumin and N-ethylmaleimide, the product contained more phosphatidic and less lysophosphatidic acid. When the subcellular components were reisolated by differential centrifugation, 70% of the phosphatidic acid sedimented with the microsomes and the lysophosphatidic acid stayed in the postmicrosomal supernatant. Thus, under appropriate conditions mitochondrially produced lysophosphatidic acid can leave the organelles and this phospholipid can be converted to phosphatidic acid by the microsomes.  相似文献   

13.
Glycerophospholipids and triglycerides are synthesized de novo by cells through an evolutionary conserved process involving serial acylations of phosphorylated glycerol. Various isoforms of the enzyme, 1-acylglycerol-3-phosphate acyltransferase (AGPAT), acylate lysophosphatidic acid at the sn-2 position to produce phosphatidic acid. We cloned a cDNA predicted to be AGPAT isoform and designated it AGPAT8. Human and mouse AGPAT8 proteins are 89% homologous, and their gene structure is also highly conserved. AGPAT8 is most closely related to AGPAT5, and its cDNA is expressed most in the heart, while AGPAT5 is expressed more in the prostate and testis. In cell lysates, AGPAT8 shows moderate acyltransferase activity with [(3)H]oleoyl-CoA but lacks acyl-CoA:lysocardiolipin acyltransferase activity. In whole cells upon incubation with [(14)C]linoleic acid, most of the radioactivity was recovered in phosphatidyl ethanolamine, phosphatidyl choline and phosphatidic acid fraction. Of the two well conserved acyltransferase motifs, NHX(4)D is present in AGPAT8, whereas arginine in the EGTR motif is substituted by aspartate. However, mutation of EGTD to EGTR did not increase enzymatic activity significantly. Based on the X-ray crystallographic structure of a related acyltransferase, squash gpat, a model is proposed in which a hydrophobic pocket in AGPAT8 accommodates fatty acyl chains of both substrates in an orientation where the NHX(4)D motif participates in catalysis.  相似文献   

14.
Phospholipids are major components of cellular membranes that participate in a range of cellular processes. Phosphatidic acid (PA) is a key molecule in the phospholipid biosynthetic pathway. In Saccharomyces cerevisiae, SLC1 has been identified as the gene encoding lysophosphatidic acid acyltransferase, which catalyzes PA synthesis. However, despite the importance of PA, disruption of SLC1 does not affect cell viability (Nagiec, M. M., Wells, G. B., Lester, R. L., and Dickson, R. C. (1993) J. Biol. Chem. 268, 22156-22163). We originally aimed to identify the acetyl-CoA:lyso platelet-activating factor acetyltransferase (lysoPAF AT) gene in yeast. Screening of a complete set of yeast deletion clones (4741 homozygous diploid clones) revealed a single mutant strain, YOR175c, with a defect in lysoPAF AT activity. YOR175c has been predicted to be a member of the membrane-bound O-acyltransferase superfamily, and we designated the gene LPT1. An Lpt1-green fluorescent protein fusion protein localized at the endoplasmic reticulum. Other than lysoPAF AT activity, Lpt1 catalyzed acyltransferase activity with a wide variety of lysophospholipids as acceptors, including lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylinositol, and lysophosphatidylserine. A liquid chromatography-mass spectrometry analysis indicated that lysophosphatidylcholine and lysophosphatidylethanolamine accumulated in the Deltalpt1 mutant strain. Although the Deltalpt1 mutant strain did not show other detectable defects, the Deltalpt1 Deltaslc1 double mutant strain had a synthetic lethal phenotype. These results indicate that, in concert with Slc1, Lpt1 plays a central role in PA biosynthesis, which is essential for cell viability.  相似文献   

15.
AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase   总被引:1,自引:0,他引:1  
AGPAT6 is a member of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family that appears to be important in triglyceride biosynthesis in several tissues, but the precise biochemical function of the enzyme is unknown. In the current study, we show that AGPAT6 is a microsomal glycerol-3-phosphate acyltransferase (GPAT). Membranes from HEK293 cells overexpressing human AGPAT6 had higher levels of GPAT activity. Substrate specificity studies suggested that AGPAT6 was active against both saturated and unsaturated long-chain fatty acyl-CoAs. Both glycerol 3-phosphate and fatty acyl-CoA increased the GPAT activity, and the activity was sensitive to N-ethylmaleimide, a sulfhydryl-modifying reagent. Purified AGPAT6 protein possessed GPAT activity but not AGPAT activity. Using [(13)C(7)]oleic acid labeling and mass spectrometry, we found that overexpression of AGPAT6 increased both lysophosphatidic acid and phosphatidic acid levels in cells. In these studies, total triglyceride and phosphatidylcholine levels were not significantly altered, although there were significant changes in the abundance of specific phosphatidylcholine species. Human AGPAT6 is localized to endoplasmic reticulum and is broadly distributed in tissues. Membranes of mammary epithelial cells from Agpat6-deficient mice exhibited markedly reduced GPAT activity compared with membranes from wild-type mice. Reducing AGPAT6 expression in HEK293 cells through small interfering RNA knockdown suggested that AGPAT6 significantly contributed to HEK293 cellular GPAT activity. Our data indicate that AGPAT6 is a microsomal GPAT, and we propose renaming this enzyme GPAT4.  相似文献   

16.
We selected cDNA plasmid clones that corrected the temperature-sensitive phenotype of Escherichia coli strain JC201, which is deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. A plasmid-based maize endosperm cDNA library was used for complementation and a plasmid that enabled the cells to grow at 44°C on ampicillin was isolated. Addition of this plasmid (pMAT1) to JC201 restored 1-acyl-sn-glycerol-3-phosphate acyltransferase activity to the cells. Total phospholipid labelling showed that the substrate for the enzyme, lysophosphatidic acid, accumulated in JC201 and was further metabolised to phosphatidylethanolamine in complemented cells. Membranes isolated from such cells were able to convert lysophosphatidic acid to phosphatidic acid in acyltransferase assays. The cDNA insert of pMAT1 contains one long open reading frame of 374 amino acids which encodes a protein of relative molecular weight 42 543. The sequence of this protein is most similar to SLC1, which is thought to be able to acylate glycerol at the sn-2 position during synthesis of inositol-containing lipids. Homologies between the SLC1 protein, the 1-acyl-sn-glycerol-3-phosphate acyltransferase of E. coli (PlsC) and the maize ORF were found with blocks of conserved amino acids, whose spacing was conserved between the three proteins, identifiable.  相似文献   

17.

Background

Phosphatidic acid (PA) is a key regulated intermediate and precursor for de novo biosynthesis of all glycerophospholipids. PA can be synthesized through the acylation of lysophosphatidic acid (LPA) by 1-acyl-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase, LPAAT). Recent findings have substantiated the essential roles of acyltransferases in various biological functions.

Methodologies/Principal Findings

We used a flow-injection-based lipidomic approach with ∼200 multiple reaction monitoring (MRM) transitions to pre-screen fatty acyl composition of phospholipids in the yeast Saccharomyces cerevisiae mutants. Dramatic changes were observed in fatty acyl composition in some yeast mutants including Slc1p, a well-characterized LPAAT, and Cst26p, a recently characterized phosphatidylinositol stearoyl incorporating 1 protein and putative LPAAT in S. cerevisiae. A comprehensive high-performance liquid chromatography–based multi-stage MRM approach (more than 500 MRM transitions) was developed and further applied to quantify individual phospholipids in both strains to confirm these changes. Our data suggest potential fatty acyl substrates as well as fatty acyls that compensate for defects in both Cst26p and Slc1p mutants. These results were consistent with those from a non-radioactive LPAAT enzymatic assay using C17-LPA and acyl-CoA donors as substrates.

Conclusions

We found that Slc1p utilized fatty acid (FA) 18:1 and FA 14:0 as substrates to synthesize corresponding PAs; moreover, it was probably the only acyltransferase responsible for acylation of saturated short-chain fatty acyls (12:0 and 10:0) in S. cerevisiae. We also identified FA 18:0, FA 16:0, FA 14:0 and exogenous FA 17:0 as preferred substrates for Cst26p because transformation with a GFP-tagged CST26 restored the phospholipid profile of a CST26 mutant. Our current findings expand the enzymes and existing scope of acyl-CoA donors for glycerophospholipid biosynthesis.  相似文献   

18.
Elucidation of the metabolic pathways of triacylglycerol (TAG) synthesis is critical to the understanding of chronic metabolic disorders such as obesity, cardiovascular disease, and diabetes. sn-Glycerol-3-phosphate acyltransferase (GPAT) and sn-1-acylglycerol-3-phosphate acyltransferase (AGPAT) catalyze the first and second steps in de novo TAG synthesis. AGPAT6 is one of eight AGPAT isoforms identified through sequence homology, but the enzyme activity for AGPAT6 has not been confirmed. We found that in liver and brown adipose tissue from Agpat6-deficient (Agpat6(-/-)) mice, N-ethylmaleimide (NEM)-sensitive GPAT specific activity was 65% lower than in tissues from wild-type mice, but AGPAT specific activity was similar. Overexpression of Agpat6 in Cos-7 cells increased an NEM-sensitive GPAT specific activity, but AGPAT specific activity was not increased. Agpat6 and Gpat1 overexpression in Cos-7 cells increased the incorporation of [(14)C]oleate into diacylglycerol (DAG) or into DAG and TAG, respectively, suggesting that the lysophosphatidic acid, phosphatidic acid, and DAG intermediates initiated by each of these isoforms lie in different cellular pools. Together, these data show that "Agpat6(-/-) mice" are actually deficient in a novel NEM-sensitive GPAT, GPAT4, and indicate that the alterations in lipid metabolism in adipose tissue, liver, and mammary epithelium of these mice are attributable to the absence of GPAT4.  相似文献   

19.
The membrane localization and properties of the Rhodopseudomonas sphaeroides sn-glycerol-3-phosphate acyltransferase have been examined utilizing enzymatically prepared acyl-acyl carrier protein (acyl-ACP) substrates as acyl donors for sn-glycerol-3-phosphate acylation. Studies conducted with membranes prepared from chemotrophically and phototrophically grown cells show that sn-glycerol-3-phosphate acyltransferase activity is predominantly (greater than 80%) associated with the cell's cytoplasmic membrane. Enzyme activity associated with the intracytoplasmic membranes present in phototrophically grown R. sphaeroides was within the range attributable to cytoplasmic membrane contamination of this membrane fraction. Enzyme activity was optimal at 40 degrees C and pH 7.0 to 7.5, and required the presence of magnesium. No enzyme activity was observed with any of the long-chain acyl-CoA substrates examined. Vaccenoyl-ACP was the preferred acyl-ACP substrate and vaccenoyl-ACP and palmitoyl-ACP were independently utilized to produce lysophosphatidic and phosphatidic acids. With either vaccenoyl-ACP or palmitoyl-ACP as sole acyl donor substrate, the lysophosphatidic acid formed was primarily 1-acylglycerol-3-phosphate and the Km(app) for sn-glycerol-3-phosphate utilization was 96 microM. The implications of these results to the mode and regulation of phospholipid synthesis in R. sphaeroides are discussed.  相似文献   

20.
As phylogenetic ancestors of plant chloroplasts cyanobacteria resemble plastids with respect to lipid and fatty acid composition. These membrane lipids show the typical prokaryotic fatty acid pattern in which the sn-2 position is exclusively esterified by C(16) acyl groups. In the course of de novo glycerolipid biosynthesis this prokaryotic fatty acid pattern is established by the sequential acylation of glycerol-3-phosphate with acyl-ACPs by the activity of different acyltransferases. In silico approaches allowed the identification of putative Synechocystis acyltransferases involved in glycerolipid metabolism. Functional expression studies in Escherichia coli showed that sll1848 codes for a lysophosphatidic acid acyltransferase with a high specificity for 16:0-ACP, whereas slr2060 encodes a lysophospholipid acyltransferase, with a broad acyl-ACP specificity but a strong preference for lysophosphatidyglycerol especially its sn-2 acyl isomer as acyl-acceptor. The generation and analysis of the corresponding Synechocystis knockout mutants revealed that lysophosphatidic acid acyltransferase unlike the lysophospholipid acyltransferase is essential for the vital functions of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号