首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptidomics of the larval Drosophila melanogaster central nervous system   总被引:10,自引:0,他引:10  
Neuropeptides regulate most, if not all, biological processes in the animal kingdom, but only seven have been isolated and sequenced from Drosophila melanogaster. In analogy with the proteomics technology, where all proteins expressed in a cell or tissue are analyzed, the peptidomics approach aims at the simultaneous identification of the whole peptidome of a cell or tissue, i.e. all expressed peptides with their posttranslational modifications. Using nanoscale liquid chromatography combined with tandem mass spectrometry and data base mining, we analyzed the peptidome of the larval Drosophila central nervous system at the amino acid sequence level. We were able to provide biochemical evidence for the presence of 28 neuropeptides using an extract of only 50 larval Drosophila central nervous systems. Eighteen of these peptides are encoded in previously cloned or annotated precursor genes, although not all of them were predicted correctly. Eleven of these peptides were never purified before. Eight other peptides are entirely novel and are encoded in five different, not yet annotated genes. This neuropeptide expression profiling study also opens perspectives for other eukaryotic model systems, for which genome projects are completed or in progress.  相似文献   

2.
Peptidomics     
Peptides occur in the whole animal kingdom, from the least evolved phyla with a very simple nervous system (coelenterates) to the highest vertebrates and are involved in most, if not all, physiological processes in animals. Knowing the amino acid sequence of peptide hormones or neurotransmitters is important since this allows for synthesis of large quantities of peptides to perform further functional analysis. Immunocytochemistry, radioimmunoassays (RIA), enzyme-linked immunosorbant assays (ELISA) and mass spectrometry can then provide information on the temporal and spatial distribution and quantification of the (neuro)peptide. Ever since the 1970s, a wealth of peptides has been discovered and investigated and this flow seems to be far from over. This is partially due to the use of new approaches mainly based on chromatographical purifications as well as molecular biological techniques. Surprisingly, peptides have so far been neglected in most proteomic studies. The finalization of the genome projects has opened new opportunities for rapid identification and functional analysis of (neuro)peptides as well. In analogy with the proteomics technology, where all proteins expressed in a cell or tissue are analyzed, the peptidomic approach aims at the simultaneous visualization and identification of the whole peptidome of a cell or tissue, i.e. all expressed peptides with their post-translational modifications (PTMs). This technology provides us with a fast and efficient tool to analyze the peptides from any tissue. This paper reviews the approaches that have been used so far to achieve this.  相似文献   

3.
Peptidomics techniques have allowed the identification of thousands of peptides that are derived from proteins in body fluids, despite the considerable challenges behind sample handling, MS‐based identification, data analysis, and integration with bioinformatics tools. Body fluids’ naturally occurring peptides are known to perform a variety of local and systemic functions; however, its knowledge is limited. Even so, the biological meaning that can be retrieved from peptidomics applied to the identification of disease markers and to the development of therapies using peptides has driven the progresses made in this field. In this review, a comparative analysis of body fluids’ peptidome data retrieved from databases and from scientific papers is performed to identify the biological processes modulated by naturally occurring peptides. This integrative analysis highlights several interesting facts, such as the small overlap between blood‐derived serum and plasma, which illustrates the impact of sample handling on these fluids peptidome. Urine is the body fluid with more naturally occurring peptides identified so far, most of which are derived from collagens. In saliva, the majority of peptides are originated from extracellular matrix proteins. Cerebrospinal fluid presents a high number of peptides derived from distinct proteins, mostly involved in the regulation of nervous system homeostasis. The lowest number of endogenous peptides was found in tears, most of which present antimicrobial activity. Collectively, data analysis highlights a peptidome signature for each body fluid, which comprehension will certainly help to improve disease management.  相似文献   

4.
In this study, peptidomics and genomics analyses were used to study antimicrobial peptides from the skin of Hylarana spinulosa. Twenty-nine different antimicrobial peptide precursors were characterized from the skin of H. spinulosa, which produce 23 mature antimicrobial peptides belonging to 12 different families. To confirm the actual presence and characteristics of these antimicrobial peptides in the skin tissue extractions from H. spinulosa, we used two distinct methods, one was peptide purification method that combined gel filtration chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and the other was peptidomics approach based on liquid chromatography in conjunction with tandem mass spectrometry (LC–MS/MS). In the peptidomics approach, incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase peptidome coverage and reproducibility of peptide ion selection. Multiple species of microorganisms were chosen to test and analyze the antimicrobial activities and spectrum of these antimicrobial peptides.  相似文献   

5.
Advances in mass spectrometry and the availability of genomic databases made it possible to determine the peptidome or peptide content of a specific tissue. Peptidomics by nanoflow capillary liquid chromatography tandem mass spectrometry of an extract of 50 larval Drosophila brains, yielded 28 neuropeptides. Eight were entirely novel and encoded by five not yet annotated genes; only two genes had a homologue in the Anopheles gambiae genome. Seven of the eight peptides did not show relevant sequence homology to any known peptide. Therefore, no evidence towards the physiological role of these 'orphan' peptides was available. We identified one of the eight peptides, IPNamide, in an extract of the Drosophila adult brain as well. Next, specific antisera were raised to reveal the distribution pattern of IPNamide and other peptides from the same precursor, in larval and adult brains by means of whole-mount immunocytochemistry and confocal microscopy. IPNamide immunoreactivity is abundantly present in both stages and a striking similarity was found between the distribution patterns of IPNamide and TPAEDFMRFamide, a member of the FMRFamide peptide family. Based on this distribution pattern, IPNamide might be involved in phototransduction, in processing sensory stimuli, as well as in controlling the activity of the oesophagus.  相似文献   

6.
The human serum proteome is closely associated with the state of the body. Endogenous peptides derived from proteolytic enzymes cleaving on serum proteins are widely studied due to their potential application in disease-specific marker discovery. However, the reproducibility of peptidome analysis of endogenous peptides is significantly influenced by the proteolytic enzymes within body fluids, thereby limiting the clinical use of the endogenous peptides. We comprehensively investigated the N and C terminus of endogenous peptides using peptidomics. The cleavage site patterns of the N and C terminus and adjacent sites from all the identified endogenous peptides were highly conserved under different sample preparation conditions, including long-term incubation at 37°C and pretreatment with repeated freeze-thaw cycles. Furthermore, a distinguishable cleavage site pattern was obtained when a different disease serum was analyzed. The conserved cleavage site pattern derived from proteolytic enzymes holds potential in highly specific disease diagnosis.  相似文献   

7.
Astrocytes play an active role in the modulation of synaptic transmission by releasing cell-cell signaling molecules in response to various stimuli that evoke a Ca(2+) increase. We expand on recent studies of astrocyte intracellular and secreted proteins by examining the astrocyte peptidome in mouse astrocytic cell lines and rat primary cultured astrocytes, as well as those peptides secreted from mouse astrocytic cell lines in response to Ca(2+)-dependent stimulations. We identified 57 peptides derived from 24 proteins with LC-MS/MS and CE-MS/MS in the astrocytes. Among the secreted peptides, four peptides derived from elongation factor 1, macrophage migration inhibitory factor, peroxiredoxin-5, and galectin-1 were putatively identified by mass-matching to peptides confirmed to be found in astrocytes. Other peptides in the secretion study were mass-matched to those found in prior peptidomics analyses on mouse brain tissue. Complex peptide profiles were observed after stimulation, suggesting that astrocytes are actively involved in peptide secretion. Twenty-six peptides were observed in multiple stimulation experiments but not in controls and thus appear to be released in a Ca(2+)-dependent manner. These results can be used in future investigations to better understand stimulus-dependent mechanisms of astrocyte peptide secretion.  相似文献   

8.
Kc 167 is a cell line established from Drosophila embryonic hemocytes and has been shown to express many extracellular matrix (ECM) and other proteins important during development. We have screened monoclonal antibodies (mAbs) raised against heparin affinity purified proteins from conditioned medium of Kc 167 cells to identify novel proteins with important roles for development. One mAb recognized a protein expressed with temporary and tissue specific patterns during Drosophila embryogenesis and larval development. This approach is an alternative to screening of Expression Sequence Tag (EST) clones by in situ hybridization to initiate reverse genetics. In addition, a number of mAbs recognizing ECM proteins were also identified. These mAbs will be useful for biochemical and cell biological analyses of Drosophila ECM proteins.  相似文献   

9.
The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000-5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273-283, FIBA 5-16, and LBN 306-313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens.  相似文献   

10.
Extensive studies in vertebrate cells have assigned a central role to Rel/NF-kappa B and AP-1 family members in the control of apoptosis. We ask here whether parallel pathways might function in Drosophila by determining if Rel/NF-kappa B or AP-1 family members contribute to the steroid-triggered death of larval salivary glands during Drosophila metamorphosis. We show that two of the three Drosophila Rel/NF-kappa B genes are expressed in doomed salivary glands and that one family member, Dif, is induced in a stage-specific manner immediately before the onset of programmed cell death. Similarly, Djun is expressed for many hours before salivary gland cell death while Dfos is induced in a stage-specific manner, immediately before this tissue is destroyed. We show that null mutations in the three Drosophila Rel/NF-kappa B family members, either alone or in combination, have no apparent effect on this death response. In contrast, Dfos is required for the proper timing of larval salivary gland cell death as well as the proper induction of key death genes. This study demonstrates a role for AP-1 in the stage-specific steroid-triggered programmed cell death of larval tissues during Drosophila metamorphosis.  相似文献   

11.
When studying the set of biologically active peptides (the so‐called peptidome) of a cell type, organ, or entire organism, the identification of peptides is mostly attempted by MS. However, identification rates are often dismally unsatisfactory. A great deal of failed or missed identifications may be attributable to the wealth of modifications on peptides, some of which may originate from in vivo post‐translational processes to activate the molecule, whereas others could be introduced during the tissue preparation procedures. Preliminary knowledge of the modification profile of specific peptidome samples would greatly improve identification rates. To this end we developed an approach that performs clustering of mass spectra in a way that allows us to group spectra having similar peak patterns over significant segments. Comparing members of one spectral group enables us to assess the modifications (expressed as mass shifts in Dalton) present in a peptidome sample. The clustering algorithm in this study is called Bonanza, and it was applied to MALDI‐TOF/TOF MS spectra from the mouse. Peptide identification rates went up from 17 to 36% for 278 spectra obtained from the pancreatic islets and from 21 to 43% for 163 pituitary spectra. Spectral clustering with subsequent advanced database search may result in the discovery of new biologically active peptides and modifications thereof, as shown by this report indeed.  相似文献   

12.
Analysis of native or endogenous peptides in biofluids can provide valuable insights into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for non-invasive monitoring of human diseases. The non-invasive nature of urine collection and the abundance of peptides in the urine makes analysis by high-throughput ‘peptidomics’ methods , an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regards to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements that it hampers both the identification of peptides and the depth of the peptidomics read when utilizing LC-MS based peptidome analysis. We report on a novel adaptation of the standard solid phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS based peptidomics in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. Expense and time requirements were comparable for both SPE and mSPE, but more interfering contaminants from the urine matrix were evident in the SPE preparations (e.g., clogging of the LC-MS columns, yellowish background coloration of prepared samples due to retained urobilin, lower peptide yields) when compared to the mSPE method. When we compared data from technical replicates of 4 runs, the mSPE method provided significantly improved efficiencies for the preparation of samples from urine (e.g., mSPE peptide identification 82% versus 18% with SPE; p = 8.92E-05). Additionally, peptide identifications, when applying the mSPE method, highlighted the biology of differential activation of urine peptidases during acute renal transplant rejection with distinct laddering of specific peptides, which was obscured for most proteins when utilizing the conventional SPE method. In conclusion, the mSPE method was found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis due to the optimized sample clean up that provided improved experimental inference from the confidently identified peptides.  相似文献   

13.
In a genomic screen we isolated the Drosophila gene hugin (hug, cytology 87C1-2) by cross-hybridisation to a human glial cell line-derived neurotrophic factor cDNA. Upon cDNA sequence analysis and in vitro expression assays, the hugin gene was found to encode a signal peptide containing proprotein that was further processed in Schneider-2 cells into peptides similar to known neuropeptides. Two of the peptides were similar to FXPRL-amides (pyrokinins) and to the ecdysis-triggering hormone, respectively. The former displayed myostimulatory activity in a bioassay on the cockroach hyperneural muscle preparation, as well as in the Drosophila heart muscle assay. Hugin is expressed during the later half of embryogenesis and during larval stages in a subgroup of neurosecretory cells of the suboesophageal ganglion. Ubiquitous ectopic hugin expression resulted in larval death predominantly at or shortly after ecdysis from second to third instar, suggesting that at least one of the posttranslational cleavage products affects molting of the larva by interfering with the regulation of ecdysis.  相似文献   

14.
Soluble human leukocyte antigen class I (sHLA)‐peptide complexes have been suggested to play a role in the modulation of immune responses and in immune evasion of cancer cells. The set of peptides eluted from sHLA molecules could serve as biomarker for the monitoring of patients with cancer or other conditions. Here, we describe an improved sHLA peptidomics methodology resulting in the identification of 1816 to 2761 unique peptide sequences from triplicate analyses of serum or plasma taken from three healthy donors. More than 90% of the identified peptides were 8–11mers and 74% of these sequences were predicted to bind to cognate HLA alleles, confirming the quality of the resulting immunopeptidomes. In comparison to the HLA peptidome of cultured cells, the plasma‐derived peptides were predicted to have a higher stability in complex with the cognate HLA molecules and mainly derived from proteins of the plasma membrane or from the extracellular space. The sHLA peptidomes can efficiently be characterized by using the new methodology, thus serving as potential source of biomarkers in various pathological conditions.  相似文献   

15.
血清多肽组谱图(简称血肽图,serum peptidome profiling)是指通过质谱分析技术获得的血清中多肽组的精确质量数的谱图,是临床蛋白质组学研究领域的一个分支,在生物标志物的发现、疾病早期诊断和个性化治疗等领域有着广阔的应用前景。而且在这些应用中,生物信息学分析是其中一个重要环节。为了给有关的生物医学工作者提供较好的支持,文章就与血肽图相关的生物信息学方法进行综述,内容涉及基线删除、标准化、峰检测、峰比对和模型建立等方面。  相似文献   

16.
Serum peptidomics is a special form of functional proteomics. The small number of blood proteins that are the source of most prominent peptides in human serum serve as a substrate pool for commonly occurring and/or cancer-derived proteases. Exoprotease activities in particular, when superimposed on the ex vivo coagulation and complement degradation pathways, contribute to generation of not only cancer-specific but also "cancer type"-specific serum peptides. Following development of a unique, semiautomated serum peptide profiling platform and after completing investigations to eliminate common experimental bias, we have now studied possible effects of gender and age on serum peptidomes of 200 healthy men and women, ages 20-80, and of 60 patients (30 men and 30 women) with metastatic thyroid carcinomas. Extensive MALDI-TOF MS and data analysis suggested negligible contributions of both age and gender to the serum peptidome patterns except that healthy men and women under 35 years, but not older individuals, could be distinguished with approximately 70% accuracy. Considering the more advanced age of most patients, this finding is unlikely to interfere with peptidomics analysis of most cancers. By examining patient samples and age/gender-matched controls followed by variability analysis of either demographic or disease (versus control) groups, we could conclusively rule out demographic bias. An optimized, 12-peptide ion thyroid cancer signature was then developed, enabling classification of an independent validation set with 95% sensitivity and 95% specificity (binomial confidence intervals, 75.1-99.9%). Ten of these peptides had previously been assigned to signature patterns of other solid tumor cancers. One of the two newly discovered peptides was dehydro-Ala(3)-fibrinopeptide A. As we expand this study to include hundreds of thyroid cancer patients, the peptide signature will be adjusted, further validated, and then evaluated in a clinical setting used either independently or in combination with existing markers.  相似文献   

17.
BACKGROUND: The introduction of double-stranded RNA (dsRNA) can selectively interfere with gene expression in a wide variety of organisms, providing an ideal approach for functional genomics. Although this method has been used in Drosophila, it has been limited to studies of embryonic gene function. Only inefficient effects have been seen at later stages of development. RESULTS: When expressed under the control of a heat-inducible promoter, dsRNA interfered efficiently and specifically with gene expression during larval and prepupal development in Drosophila. Expression of dsRNA corresponding to the EcR ecdysone receptor gene generated defects in larval molting and metamorphosis, resulting in animals that failed to pupariate or prepupae that died with defects in larval tissue cell death and adult leg formation. In contrast, expression of dsRNA corresponding to the coding region of the betaFTZ-F1 orphan nuclear receptor had no effect on puparium formation, but led to an arrest of prepupal development, generating more severe lethal phenotypes than those seen with a weak betaFTZ-F1 loss-of-function allele. Animals that expressed either EcR or betaFTZ-F1 dsRNA showed defects in the expression of corresponding target genes, indicating that the observed developmental defects are caused by disruption of the genetic cascades that control the onset of metamorphosis. CONCLUSIONS: These results confirm and extend our understanding of EcR and betaFTZ-F1 function. They also demonstrate that dsRNA expression can inactivate Drosophila gene function at later stages of development, providing a new tool for functional genomic studies in Drosophila.  相似文献   

18.
19.
Rapid progress of separation techniques as well as methods of structural analysis provided conditions in the past decade for total screening of complex biologic mixtures for any given class of biomolecules. The present review updates the reader with the modern state of peptidomics, a chapter of chemical biology that deals with structure and biologic properties of sets of peptides present in biologic tissues, cells or fluids. Scope and limitations of currently employed experimental techniques are considered and the main results are outlined. Considerable attention will be afforded to the biologic role of peptides formed in vivo by proteolysis of nonspecialized precursor proteins with other well-defined functions. In conclusion, the connection is discussed between peptidomics and the much more mature and still closely related field of proteomics.  相似文献   

20.
Investigating endogenous peptides and peptidases using peptidomics   总被引:1,自引:0,他引:1  
Tinoco AD  Saghatelian A 《Biochemistry》2011,50(35):7447-7461
Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters, and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been a successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome--all the peptides in a cell, tissue, or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography--tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号