首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
A method based on the degradation by enzymes and nitrous acid of isotopically labelled glycosaminoglycans has been employed to study the synthesis of these compounds in normal, animalized and vegetalized sea urchin embryos. According to standard criteria, these organisms synthesize dermatan sulfate, heparan sulfate, hyaluronate and keratan sulfate. The hyaluronate seems to be slightly sulfated, it may thus be mucoitin sulfate. The preliminary results obtained suggest a conspicuous difference between animalized and vegetalized embryos: the synthesis of dermatan sulfate is suppressed in the former, while proceeding normally in the latter. The synthesis of heparan sulfate is not affected by our experimental conditions, but the isotope incorporation in hyaluronate and in keratan sulfate is decreased, more in the vegetalized than in the animalized embryos.  相似文献   

2.
"Fibroblast-like" cells from the intimal layer of bovine aorta were grown in culture. The formation, composition, molecular weight and turnover rate of different pools of glycosaminoglycans were investigated in cultures incubated in the presence [35S]sulfate or [14C]glucosamine. The newly synthesized glycosaminoglycans are distributed into an extracellular pool (37 - 58%), a cell-membrane associated or pericellular pool (23 - 33%), and an intracellular pool (19 - 30%), each pool exhibiting a characteristic distribution pattern of chondroitin sulfate, dermatan sulfate, heparan sulfate and hyaluronate. The distribution pattern of the extracellular glycosaminoglycans resembles closely that found in bovine aorta. A small subfraction of the pericellular pool - tentatively named "undercellular" pool--has been characterized by its high heparan sulfate content. The intracellular and pericellular [35S]glycosaminoglycan pools reach a constant radioactivity after 8-12 h and 24 h, respectively, whereas the extracellular [35S]glycosaminoglycans are secreted into the medium at a linear rate over a period of at least 6 days. The intracellular glycosaminoglycans are mainly in the process of degradation, as indicated by their low molecular weight and by their half-life of 7 h, but intracellular dermatan sulfate is degraded more rapidly (half-life 4-5 h) than intracellular chondroitin sulfate and heparan sulfate (half-life 7-8 h). Glycosaminoglycans leave the pericellular pool with a half-life of 12-14 h by 2 different routes: about 60% disappear as macromolecules into the culture medium, and the remainder is pinocytosed and degraded to a large extent. Extracellular and at least a part of the pericellular glycosaminoglycans are proteoglycans. Even under dissociative conditions (4M guanidinium chloride) their hydrodynamic volume is sufficient for partial exclusion from Sepharose 4B gel. The existence of topographically distinct glycosaminoglycan pools with varying metabolic characteristics and differing accessibility for degradation requiresa reconsideration and a more reserved interpretation of results concerning the turnover rates of glycosaminoglycans as determined in arterial tissue.  相似文献   

3.
Sepharose CL-6B column chromatography of crude extracts from the slices of regenerating rat livers after partial hepatectomy and sham-operated controls labeled with [35S]sulfuric acid revealed an enhancement of [35S]sulfate incorporation into proteoglycan fractions during regeneration. The 35S-labeled proteoglycans contained heparan sulfate (more than 80% of the total) and chondroitin/dermatan sulfate. The 35S-incorporation into both glycosaminoglycans increased to maxima 3-5 days after partial hepatectomy and decreased thereafter toward the respective control levels. When [35S]sulfuric acid was replaced by [3H]glucosamine, similar results were obtained. These results suggest that the maximal stimulation of proteoglycan synthesis in regenerating rat liver follows the maximal mitosis of hepatic cells 1-2 days after partial hepatectomy. The 35S-labeled proteoglycans from regenerating liver 3 days after partial hepatectomy and control were analyzed further. They were similar in chromatographic behavior on a gel filtration or an anion-exchange column and in glycosaminoglycan composition. Their glycosaminoglycans were indistinguishable in electrophoretic mobility. However, these proteoglycans were slightly but significantly different in their affinity to octyl-Sepharose and in the molecular-weight distribution of their glycosaminoglycans.  相似文献   

4.
We studied changes in glycosaminoglycan content and concentration during postresectional compensatory lung growth in adult male rats. After right trilobectomy, left lung dry weight was normal at 4 days, increased 74% between 4 and 7 days, and more slowly over the next week. Total glycosaminoglycan content per milligram dry lung weight increased early and rapidly, reaching 189% of the control value at 4 days postresection. The magnitude and temporal pattern of increase was different for different glycosaminoglycan subtypes. Hyaluronate and chondroitin sulfate content were increased by 198 and 113%, respectively, at 4 days, with no further increases subsequently. Heparan sulfate content increased more slowly and steadily, and dermatan sulfate concentrations did not change. At 4 days, the percent of total glycosaminoglycans that was hyaluronate was almost doubled, whereas the percent that was heparan sulfate was decreased; by day 7 the percent compositions had returned to normal. We conclude that changes in glycosaminoglycans occur early in postresectional lung growth and speculate that they may play a facilitatory role.  相似文献   

5.
Diabetes mellitus was induced in one group of rats by a single injection of streptozotocin. The glycemia, the body weight, and the blood systolic pressure were measured every week, and the 24 h urine volume and urinary excretions of creatinine, albumin and glycosaminoglycans were measured every 2 weeks. At the end of the experiment (12 weeks) the weight and the glycosaminoglycan composition of the kidneys were determined. All the diabetic animals were hyperglycemic, hypertense, and did not gain weight during all the experimental period. Albuminuria appeared from the second week on. Rat urine was shown to contain heparan sulfate, chondroitin sulfate, and dermatan sulfate, and the glycosaminoglycan excretion decreased in all diabetic animals. The onset of the change in glyco-samino-glycan excretion rate was a very early event, appearing in the second week after diabetes induction. The main glycosaminoglycan found in normal rat kidney was heparan sulfate and, in contrast to the urine, the total kidney glycosaminoglycans increased in diabetic kidney, due to chondroitin sulfate and dermatan sulfate accumulation. The heparan sulfate concentration (per tissue dry weight) did not change. Our results suggest that quantification of urinary glycosaminoglycans may be a useful tool for the early diagnosis of diabetic nephropathy.  相似文献   

6.
The proteoglycans synthesized by fibroblasts derived from human donors of ages ranging from 12 years to 68 years have been studied. In addition, the in vitro proliferation rates of the various cell strains were studied and demonstrated that increasing donor age correlated with a decrease in proliferative activity. The incorporation of [35S]-sulfate into proteoglycans decreased with increasing donor age with cells from the oldest donor demonstrating a 50% reduction compared with cells from the youngest donor. Analysis on Sepharose CL-4B of isolated [35S]-labeled proteoglycans for molecular size distribution revealed few differences between the cell-layer-associated proteoglycans of all cell strains studied. However, analysis of the medium-associated [35S]-labeled proteoglycans demonstrated an increase in the amount of small molecular size proteoglycans with increasing age. More specific analysis of the glycosaminoglycan composition revealed an increase in heparan sulfate from 52% to 73% in the cell-layer-associated proteoglycans of cells from the youngest and oldest donors, respectively. Accompanying this increase was a relative decrease in dermatan and chondroitin sulfate content from 24% to 13% and 25% to 16%, respectively, with increasing donor age. Additionally, the degree of N-sulfation of cell layer heparan sulfate increased with age. Heparan sulfate levels increased in the medium as well with increasing age, with a concomitant decrease in chondroitin sulfate. The quantity of medium-derived dermatan sulfate remained relatively evenly distributed throughout the various ages studied. The various differences noted are considered to reflect the general metabolic changes associated with aging. In particular the increase in heparan sulfate content with age is considered to be related to the decreased proliferative activity of the fibroblasts with increasing age.  相似文献   

7.
The sulfated glycosaminoglycans synthesized in the forelimb plates of rats on days 12, 13, 14, and 15 of gestation were characterized by their susceptibility to various glycosaminoglycan lyases. On days 12 and 13, heparan sulfate accounted for approximately 65% of the newly synthesized sulfated glycosaminoglycans. Small amounts of dermatan sulfate and chondroitin sulfates were also observed. On day 14, the relative amount of chondroitin 4-sulfate began to increase, there being a compensatory decrease in the amount of heparan sulfate. 35S-Sulfate-labeled material was extracted from day-13 forelimb plates with 4 M guanidine/HCl without proteolysis. Using ultracentrifugation on a sucrose density gradient, the extract was separated into two peaks: a light peak (L) mainly composed of heparan sulfate, and a faster-sedimenting peak (M) mainly composed of chondroitin sulfate. The cartilage-type proteoglycan (H) was first detectable on day 14 of gestation, indicating that chondrogenesis in rat forelimb plates starts on day 14 of gestation. In addition to these previously identified glycosaminoglycans or proteoglycans, we isolated an unknown component in the glycosaminoglycan preparations obtained from limb plates during these developmental stages. This component was not found in glycosaminoglycan preparations obtained either from the brain or tail of rat fetuses at the same stages.  相似文献   

8.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

9.
The leg musculature from 11, 14, and 17 day chick embryos was analyzed histochemically to investigate the temporal and spatial distribution of various types of sulfated glycosaminoglycans present during skeletal muscle development. Types of glycans were identified by selective degradation with specific glycosidases and nitrous acid coupled with Alcian blue staining procedures for sulfated polyanions and with [35S]sulfate autoradiography. On day 11, radiolabeled chondroitin sulfate glycosaminoglycans are localized extracellularly in both the myogenic and connective tissue cell populations. By day 17, incorporation of [35S]sulfate into chondroitin sulfate is substantially reduced, although Alcian blue-stained chondroitin sulfate molecules are still detectable. With increasing age and developmental state of the tissues, radiolabeled and stained dermatan sulfate and heparan sulfate progressively increase in relative quantity compared to chondroitin sulfate both in muscle and in associated connective tissue elements. These changes in glycosaminoglycans correlate well with similar changes previously determined biochemically and further document the alterations in extracellular matrix components during embryonic skeletal myogenesis.  相似文献   

10.
A comparison has been made of the synthesis of glycosaminoglycans by human skin fibroblasts cultured on plastic or collagen gel substrata. Confluent cultures were incubated with [3H]glucosamine and Na235SO4 for 48h. Radiolabelled glycosaminoglycans were then analysed in the spent media and trypsin extracts from cells on plastic and in the medium, trypsin and collagenase extracts from cells on collagen gels. All enzyme extracts and spent media contained hyaluronic acid, heparan sulphate and dermatan sulphate. Hyaluronic acid was the main 3H-labelled component in media and enzyme extracts from cells on both substrata, although it was distributed mainly to the media fractions. Heparan sulphate was the major [35S]sulphated glycosaminoglycan in trypsin extracts of cells on plastic, and dermatan sulphate was the minor component. In contrast, dermatan sulphate was the principal [35S]sulphated glycosaminoglycan in trypsin and collagenase extracts of cells on collagen gels. The culture substratum also influenced the amounts of [35S]sulphated glycosaminoglycans in media and enzyme extracts. With cells on plastic, the medium contained most of the heparan sulphate (75%) and dermatan sulphate (> 90%), whereas the collagenase extract was the main source of heparan sulphate (60%) and dermatan sulphate (80%) from cells on collagen gels; when cells were grown on collagen, the medium contained only 5-20% of the total [35S]sulphated glycosaminoglycans. Depletion of the medium pool was probably caused by binding of [35S]sulphated glycosaminoglycans to the network of native collagen fibres that formed the insoluble fraction of the collagen gel. Furthermore, cells on collagen showed a 3-fold increase in dermatan sulphate synthesis, which could be due to a positive-feedback mechanism activated by the accumulation of dermatan sulphate in the microenvironment of the cultured cells. For comparative structural analyses of glycosaminoglycans synthesized on different substrata labelling experiments were carried out by incubating cells on plastic with [3H]glucosamine, and cells on collagen gels with [14C]glucosamine. Co-chromatography on DEAE-cellulose of mixed media and enzyme extracts showed that heparan sulphate from cells on collagen gels eluted at a lower salt concentration than did heparan sulphate from cells on plastic, whereas with dermatan sulphate the opposite result was obtained, with dermatan sulphate from cells on collagen eluting at a higher salt concentration than dermatan sulphate from cells on plastic. These differences did not correspond to changes in the molecular size of the glycosaminoglycan chains, but they may be caused by alterations in polymer sulphation.  相似文献   

11.
Biosynthesis of proteoglycans by isolated rabbit glomeruli   总被引:8,自引:0,他引:8  
Isolated rabbit glomeruli were incubated in vitro with 35SO4 in order to analyze the proteoglycans synthesized. Proteoglycans extracted with 4 M guanidine HCl from whole isolated glomeruli and from purified glomerular basement membrane (GBM) were analyzed by gel filtration chromatography. Two types of sulfated proteoglycans were found to be synthesized by rabbit glomeruli and these contained either heparan sulfate or chondroitin/dermatan sulfate glycosaminoglycan chains. These glycosaminoglycans were characterized by their sensitivity to selective degradation by nitrous acid or chondroitinase ABC, respectively. The major proteoglycan extracted from the whole glomeruli was a chondroitin/dermatan sulfate species (75%), while purified GBM contained mostly heparan sulfate (70%). The glycosaminoglycan chains were estimated to be about 12,000 molecular weight which is consistent with previous estimates for similar molecules extracted from the rat GBM.  相似文献   

12.
The effects of colchicine on the morphology, substrate adhesiveness, and production of glycosaminoglycan (GAG) macromolecules by cultured pre-capillary pulmonary endothelial cell were studied. Colchicine-treated cells demonstrated altered morphology and decreased substrate adhesiveness compared to untreated cells. In addition, [35S]sulfate incorporation into glycosaminoglycans was decreased 33% after treatment with colchicine. Spectrophotometric measurement of total cellular GAG revealed a similar GAG reduction in colchicine-treated cells. The composition of [35S]sulfate radiolabelled GAG was similar in cultures with and without colchicine, consisting of approximately 56% chondroitin sulfate and the remainder heparin/heparan sulfate. The results indicate that colchicine influences the biological behavior of pre-capillary endothelial cells, in part by altering the amount of glycosaminoglycan molecules produced.  相似文献   

13.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

14.
Glycosaminoglycan synthesis was studied in explant cultures of hamster lungs 15 and 45 days following intratracheal administration of Bleomycin. At both time points, a statistically significant increase in 35S-sulfate incorporation into glycosaminoglycans was seen in the Bleomycin-treated explants compared with that of the controls. Furthermore, the percentage of label associated with dermatan sulfate was significantly higher in the treated explants than in controls at both 15 and 45 days. Conversely, the percentage of labeled heparin and/or heparan sulfate was significantly lower for the treated explants compared to controls at these times. These results indicate that glycosaminoglycan synthesis is altered from normal in this model of interstitial lung disease. Comparison of these data with previous measurements of glycosaminoglycan synthesis in another model of interstitial lung disease, induced by N-nitroso-N-methylurethane, reveals marked similarity in the changes from normal in 35S-labeling.  相似文献   

15.
FGF-7 is induced after injury and induces the proliferation of keratinocytes. Like most members of the FGF family, the activity of FGF-7 is strongly influenced by binding to heparin, but this glycosaminoglycan is absent on keratinocyte cell surfaces and minimally present in the wound environment. In this investigation we compared the relative activity of heparan sulfate and chondroitin sulfate B (dermatan sulfate), glycosaminoglycans that are present in wounds. A lymphoid cell line (BaF/KGFR) containing the FGF-7 receptor (FGFR2 IIIb) was treated with FGF-7 and with various glycosaminoglycans. FGF-7 did not support cell proliferation in the absence of glycosaminoglycan or with addition of heparan sulfate or chondroitin sulfate A/C but did stimulate BaF/KGFR division in the presence of dermatan sulfate or highly sulfated low molecular weight fractions of dermatan. Dermatan sulfate also enabled FGF-7-dependent phosphorylation of mitogen-activated protein kinase and promoted binding of radiolabeled FGF-7 to FGFR2 IIIb. In addition, dermatan sulfate and FGF-7 stimulated growth of normal keratinocytes in culture. Thus, dermatan sulfate, the predominant glycosaminoglycan in skin, is the principle cofactor for FGF-7.  相似文献   

16.
The characterization of intracellularly stored glycosaminoglycans from organs of a patient suffering from mucopolysaccharidosis III A (Sanfilippo A disease) is described. Both heparan sulfate and galactosamine-containing glycosaminoglycans (chondroitin sulfate, dermatan sulfate) are accumulated in the liver, whereas in the other organs (spleen, kidney, heart, cerebrum, cerebellum) heparan sulfate is almost the only glycosaminoglycan stored. It is shown by [3H]NaBH4 reduction and subsequent identification of the 3H-labelled sugar alcohols that heparan sulfate is degraded in all organs by at least two endoglycosidases, an endoglucuronidase and an endoglucosaminidase, to fragments of low molecular weight (Mr approximately 2 000-6 600).  相似文献   

17.
Developmental and Age-Related Changes in Rat Brain Glycosaminoglycans   总被引:2,自引:1,他引:1  
The quantities of each major class of glycosaminoglycan were determined in rat cerebrum from postnatal day 5 to 30 months of age. Chondroitin sulphate, dermatan sulphate, heparan sulphate, heparin, and hyaluronate were found, but no keratan sulphate was detected. Large and rapid changes in glycosaminoglycan content were observed during the period of brain maturation, and thereafter relatively steady levels were maintained until after the age of 12 months. The most remarkable change in the aged rat cerebrum was the ratio by weight of hyaluronate to chondroitin sulphate, which was approximately 1:1 from postnatal day 10 to 18 months but increased to 2.6:1 by the age of 30 months. In immature rats, the proportion of nonsulphated and 6-sulphated disaccharides derived from chondroitinase AC digests of brain glycosaminoglycans was much greater than in adults. In mature rats, chondroitin sulphate was composed almost entirely of 4-sulphated disaccharide subunits. The possibility that these changes could affect the permeability properties of the cerebral extracellular space and ionic equilibria in the brain is discussed.  相似文献   

18.
The role of different glycosaminoglycan species from the vessel walls as physiological antithrombotic agents remains controversial. To further investigate this aspect we extracted glycosaminoglycans from human thoracic aorta and saphenous vein. The different species were highly purified and their anticoagulant and antithrombotic activities tested by in vitro and in vivo assays. We observed that dermatan sulfate is the major anticoagulant and antithrombotic among the vessel wall glycosaminoglycans while the bulk of heparan sulfate is a poorly sulfated glycosaminoglycan, devoid of anticoagulant and antithrombotic activities. Minor amounts of particular a heparan sulfate (< 5% of the total arterial glycosaminoglycans) with high anticoagulant activity were also observed, as assessed by its retention on an antithrombin-affinity column. Possibly, this anticoagulant heparan sulfate originates from the endothelial cells and may exert a significant physiological role due to its location in the interface between the vessel wall and the blood. In view of these results we discuss a possible balance between the two glycosaminoglycan-dependent anticoagulant pathways present in the vascular wall. One is based on antithrombin activation by the heparan sulfate expressed by the endothelial cells. The other, which may assume special relevance after vascular endothelial injury, is based on heparin cofactor II activation by the dermatan sulfate proteoglycans synthesized by cells from the subendothelial layer.  相似文献   

19.
Age-related changes in renal function have been attributed to alterations in the chemical composition of the kidney tissues. Hence, the glycosaminoglycan composition of the renal cortex and medulla at varying age intervals was investigated. Glycosaminoglycans were isolated from the tissues by means of digestion with collagenase and pronase and purified by ethanol precipitation. Subsequent separation of various polyanions was accomplished by ion exchange chromatography on a Dowex 1-X2 column, using sodium chloride buffers of increasing ionic strengths. The glycosaminoglycans in each fraction were identified and quantitated by digestion with specific enzymes, including hyaluronidase, chondroitinase AC and ABC. The enzyme resistant material was separated and further digested with nitrous acid to quantitate the proportion of heparon sulfate. The results indicate that the glycosaminoglycan content of the renal medulla was much higher than the cortex at all the age intervals studied, and age-induced reduction was mainly cortical. There was a significant reduction in the heparan sulfate content of the cortex in aging. Interestingly, the major glycosaminoglycan content of the medulla was hyaluronic acid, which showed a sharp increase during aging, whereas heparan sulfate declined. Chondroitin sulfate was not altered due to age in either tissue. The molecular weight of hyaluronic acid was determined by column chromatography. Results indicate that the size of hyaluronate in the cortex was small and did not vary with age. In the medulla of the younger age group, a considerable amount of large size hyaluronate was observed. As age increased, the size decreased. The results strongly suggest that alteration in the renal glycosaminoglycans may be partly responsible for the age related protinuria and ionic imbalance.  相似文献   

20.
Rat liver parenchymal cells were evaluated after 2 days of primary culture for their ability to synthesize and accumulate heparan sulfate as the major component and low-sulfated chondroitin sulfate, dermatan sulfate, chondroitin sulfate and hyaluronic acid as the minor ones. The newly synthesized glycosaminoglycans secreted into the medium were different from those remaining with and/or on the cell layer. Low-sulfated chondroitin 4-sulfate, a major glycosaminoglycan in blood, was synthesized in the order of 320 μg/liver per day, more than 90% of which was secreted into the medium within 16 h and 40% of the glycan secreted was degraded during that time. On the other hand, heparan sulfate, the major glycosaminoglycan synthesized by the parenchymal cells, was mainly distributed in the cell layer. After 8 days of culture, the synthesis of glycosaminoglycans by the cells increased markedly, especially dermatan sulfate, chondroitin sulfate and hyaluronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号