首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The p63 protein is crucial for epidermal development, and its mutations cause the extrodactyly ectodermal dysplasia and cleft lip/palate syndrome. The three-dimensional solution structure of the p63 sterile α-motif (SAM) domain (residues 505–579), a region crucial to explaining the human genetic disease ankyloblepharon-ectodermal dysplasia-clefting syndrome (AEC), has been determined by nuclear magnetic resonance spectroscopy. The structure indicates that the domain is a monomer with the characteristic five-helix bundle topology observed in other SAM domains. It includes five tightly packed helices with an extended hydrophobic core to form a globular and compact structure. The dynamics of the backbone and the global correlation time of the molecule have also been investigated and compared with the dynamical properties obtained through molecular dynamics simulation. Attempts to purify the pathological G534V and T537P mutants, originally identified in AEC, were not successful because of the occurrence of unspecific proteolytic degradation of the mutated SAM domains. Analysis of the structural dynamic properties of the G534V and T537P mutants through molecular dynamics simulation and comparison with the wild type permits detection of differences in the degree of free-dom of individual residues and discussion of the possible causes for the pathology.  相似文献   

8.
Heppell B  Lafontaine DA 《Biochemistry》2008,47(6):1490-1499
The S-adenosylmethionine (SAM) riboswitch is one of the most recurrent riboswitches found in bacteria and has three known different natural aptamers. The Bacillus subtilis yitJ SAM riboswitch aptamer is organized around a four-way junction which is characterized by the presence of a pseudoknot and a K-turn motif. By replacing the adenine involved in a Watson-Crick base pair at position 138 in the core region of the aptamer with the fluorescent analogue 2-aminopurine (2AP), we show that the ligand-induced reorganization of the aptamer strongly attenuates 2AP fluorescence. The fluorescence quenching process is specific to SAM on the basis of the observation that the structural analogue S-adenosylhomocysteine does not promote a similar effect. We find that the pseudoknot is important for the reorganization of the core domain and that the K-turn motif also has a marked influence on the core domain reorganization, most probably through its important role in pseudoknot formation. Finally, we show that SAM riboswitch ligand binding is facilitated by the L7Ae K-turn binding protein, which suggests that K-turn motifs may be protein anchor sites used by riboswitches to promote RNA folding.  相似文献   

9.
RNA recognition via the SAM domain of Smaug   总被引:1,自引:0,他引:1  
The Nanos protein gradient in Drosophila, required for proper abdominal segmentation, is generated in part via translational repression of its mRNA by Smaug. We report here the crystal structure of the Smaug RNA binding domain, which shows no sequence homology to any previously characterized RNA binding motif. The structure reveals an unusual makeup in which a SAM domain, a common protein-protein interaction module, is affixed to a pseudo-HEAT repeat analogous topology (PHAT) domain. Unexpectedly, we find through a combination of structural and genetic analysis that it is primarily the SAM domain that interacts specifically with the appropriate nanos mRNA regulatory sequence. Therefore, in addition to their previously characterized roles in protein-protein interactions, some SAM domains play crucial roles in RNA binding.  相似文献   

10.
The sterile alpha motif (SAM) domains are among the most versatile protein domains in biology, and the variety of the oligomerization states contribute to their diverse roles in many diseases. A better understanding of the structure and dynamics of various SAM domains will provide a scientific basis for drug development targeting them. Here, we used SEC-MALS, HPLC, NMR, and other biophysical techniques to characterize the structural features and dynamics of the SAM1 domain in SASH1. SASH1 is a scaffold protein belonging to the same family as SASH3. Unlike the dimerization seen in SASH3′s SAM domain, our SEC-MALS and SE-HPLC showed that SAM1 exists primarily as a less compact monomer with a minor oligomer. NMR assignment, relaxation, and exchange experiments revealed the presence of both a disordered monomer and a more structured oligomer with multiple timescale exchange regimes in solution. Mutagenesis and SE-HPLC showed that D663A/T664K substitutions in SAM1 increased its oligomerization. In sum, this study is the first to characterize a disordered structure for a SAM domain, provides additional evidence and framework for the diversity of SAM domains, and identifies a region in SAM1 as a potential starting point to further characterize the structural mechanism of oligomerization of the domain.  相似文献   

11.
12.
The "RNA world" hypothesis rests on the assumption that RNA polymerase ribozymes can replicate RNA without the use of protein. In the laboratory, in vitro selection has been used to create primitive versions of such polymerases. The best variant to date is a ribozyme called B6.61 that can extend a RNA primer template by 20 nucleotides (nt). This polymerase has two domains: the recently crystallized Class I ligase core, responsible for phosphodiester bond formation, and the poorly characterized accessory domain that makes polymerization possible. Here we find that the accessory domain is specified by a 37-nt bulged stem-loop structure. The accessory domain is positioned by a tertiary interaction between the terminal AL4 loop of the accessory and the J3/4 triloop found within the ligase core. This docking interaction is associated with an unwinding of the A3 and A4 helixes that appear to facilitate the correct positioning of an essential 8-nt purine bulge found between the two helices. This, together with other constraints inferred from tethering the accessory domain to a range of sites on the ligase core, indicates that the accessory domain is draped over the vertex of the ligase core tripod structure. This geometry suggests how the purine bulge in the polymerase replaces the P2 helix in the Class I ligase with a new structure that may facilitate the stabilization of incoming nucleotide triphosphates.  相似文献   

13.
14.
Li Y  Karnak D  Demeler B  Margolis B  Lavie A 《The EMBO journal》2004,23(14):2723-2733
L27 is a protein-binding domain that can assemble essential proteins for signaling and cell polarity into complexes by interacting in a heterodimeric manner. One of these protein complexes is the PATJ/PALS1/Crumbs tripartite complex, which is crucial for the establishment and maintenance of cell polarity. To reveal the structural basis underlining the obligate heterodimerization, we have determined the crystal structure of the PALS1-L27N/PATJ-L27 heterodimer complex. Each L27 domain is composed of three helices. The two L27 domains heterodimerize by building a compact structure consisting of a four-helix bundle formed by the first two helices of each L27 domain and one coiled-coil formed by the third helix of each domain. The large hydrophobic packing interactions contributed by all the helices of both L27 domains predominantly drive the heterodimer formation, which is likely to be a general feature of L27 domains. Combined with mutational studies, we can begin to understand the structural basis for the specificity of L27 binding pairs. Our results provide unique insights into L27 domain heterodimer complex, which is critical for cell polarization.  相似文献   

15.
Protein L23 from the ribosome of Escherichia coli is the primary ribosomal product cross-linked to affinity-labelled puromycin; it lies, therefore, within the A-site domain of the peptidyl transferase centre on the 50 S subunit. We have characterized this functional domain by isolating and sequencing the RNA binding site of protein L23; it consists of two main fragments of 25 and 105 nucleotides that strongly interact and are separated by 172 nucleotides in the primary sequence. The higher-order structure of the RNA moiety was probed by chemical reagents, and by single-strand and double-strand-specific ribonucleases; a secondary structural model and a tertiary structural interaction are proposed on the basis of these data that are compatible with phylogenetic sequence comparisons.Several nucleotides exhibited altered chemical reactivity, both lower and higher, in the presence of protein L23, thereby implicating a large proportion of the RNA structure in the protein binding. The sites were located mainly at the extremities of the helices and at nucleotides that were putatively bulged out from the helices.The RNA moiety and an adjacent excised fragment contain several highly conserved sequences and a modified adenosine. Such sequences constitute important functional domains of the RNA and may contribute to the putative role of this RNA region in the peptidyl transferase centre.  相似文献   

16.
DE x DH proteins are believed to modulate the structures of RNAs and ribonucleoprotein complexes by disrupting RNA helices and RNA-protein interactions. All DE x DH proteins contain a two-domain catalytic core that enables their RNA-dependent ATPase and RNA helicase activities. The catalytic core may be flanked by ancillary domains that are proposed to confer substrate specificity and facilitate the unique functions of individual proteins. The Escherichia coli DE x DH protein DbpA and its Bacillus subtilis ortholog YxiN have similar 75aa carboxy-terminal domains, and both proteins are specifically targeted to 23S rRNA. Here we demonstrate that the carboxy-terminal domain of YxiN is sufficient to confer RNA specificity by characterizing a chimera in which this domain is appended to the core domains of E.coli SrmB, a DE x DH protein with no apparent substrate specificity. Both the RNA-dependent ATPase and RNA helicase activities of the chimera are specifically activated by 23S rRNA and abolished by sequence changes within hairpin 92, a critical recognition element for Y x iN. These data support a model in which the carboxy-terminal domain binds hairpin 92 to target the protein to 23S rRNA.  相似文献   

17.
The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the "split-SET" domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 α-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20.  相似文献   

18.
The neuronal scaffolding protein AIDA-1 is believed to act as a convener of signals arising at postsynaptic densities. Among the readily identifiable domains in AIDA-1, two closely juxtaposed sterile alpha motif (SAM) domains and a phosphotyrosine binding domain are located within the C-terminus of the longest splice variant and exclusively in four shorter splice variants. As a first step towards understanding the possible emergent properties arising from this assembly of ligand binding domains, we have used NMR methods to solve the first structure of a SAM domain tandem. Separated by a 15-aa linker, the two SAM domains are fused in a head-to-tail orientation that has been observed in other hetero- and homotypic SAM domain structures. The basic nuclear import signal for AIDA-1 is buried at the interface between the two SAM domains. An observed disparity between the thermal stabilities of the two SAM domains suggests a mechanism whereby the second SAM domain decouples from the first SAM domain to facilitate translocation of AIDA-1 to the nucleus.  相似文献   

19.
The solution structure of the DNA-binding domain (DBD) of the human retinoic acid receptor-beta (hRAR-beta) has been determined by nuclear magnetic resonance (NMR) spectroscopy and distance geometry (DG). The assignments of 1H and 15N resonances were carried out by the use of 1H homonuclear and 15N-1H heteronuclear two- and three-dimensional NMR experiments. The structure of RAR DBD has been obtained on the basis of distance constrains derived from NMR experiments. The structure shows that two "zinc-finger" domains of the protein are followed by two perpendicular alpha-helices and a short beta-sheet near the N-terminus. Apolar residues in both helices form a hydrophobic core. Binding models of RAR DBD to its inverted and direct repeat response elements have been constructed based on this three-dimensional structure.  相似文献   

20.
The PIN (PilT N‐terminus) domain is a compact RNA‐binding protein domain present in all domains of life. This 120‐residue domain consists of a central and parallel β sheet surrounded by α helices, which together organize 4–5 acidic residues in an active site that binds one or more divalent metal ions and in many cases has endoribonuclease activity. In bacteria and archaea, the PIN domain is primarily associated with toxin–antitoxin loci, consisting of a toxin (the PIN domain nuclease) and an antitoxin that inhibits the function of the toxin under normal growth conditions. During nutritional or antibiotic stress, the antitoxin is proteolytically degraded causing activation of the PIN domain toxin leading to a dramatic reprogramming of cellular metabolism to cope with the new situation. In eukaryotes, PIN domains are commonly found as parts of larger proteins and are involved in a range of processes involving RNA cleavage, including ribosomal RNA biogenesis and nonsense‐mediated mRNA decay. In this review, we provide a comprehensive overview of the structural characteristics of the PIN domain and compare PIN domains from all domains of life in terms of structure, active site architecture, and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号