首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GalNAcbeta1,4GlcNAc (LacdiNAc or LDN) structure is a more common structural feature in invertebrate glycoconjugates when compared with the Galbeta1,4GlcNAc structure. Recently, beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAcT) was identified in some invertebrates including Drosophila. However, the LDN structure has not been reported in Drosophila, and the biological function of LDN remains to be determined. In this study, we examined acceptor substrate specificity of Drosophila beta4GalNAcTA by using some N- and O-glycans on glycoproteins and neutral glycosphingolipids (GSLs). GalNAc was efficiently transferred toward N-glycans, O-glycans, and the arthro-series GSLs. Moreover, we showed that dbeta4GalNAcTA contributed to the synthesis of the LDN structure in vivo. The dbeta4GalNAcTA mRNA was highly expressed in the developmental and adult neuronal tissues. Thus, these results suggest that dbeta4GalNAcTA acts on the terminal GlcNAc residue of some glycans for the synthesis of LDN, and the LDN structure may play a role in the physiological or neuronal development of Drosophila.  相似文献   

2.
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.  相似文献   

3.
We have identified a novel N -acetylgalactosaminyltransferase activity in lactating bovine mammary gland membranes. Acceptor specificity studies and analysis of products obtained in vitro by 400 MHz1H-NMR spectroscopy revealed that the enzyme catalyses the transfer of N - acetylgalactosamine (GalNAc) from UDP-GalNAc to acceptor substrates carrying a terminal, beta-linked N -acetylglucosamine (GlcNAc) residue and establishes a beta1-->4-linkage forming a GalNAcbeta1-->4GlcNAc ( N, N '-diacetyllactosediamine, lacdiNAc) unit. Therefore, the enzyme can be identified as a UDP-GalNAc:GlcNAcbeta-R beta1-->4-N- acetylgalactosaminyltransferase (beta4-GalNAcT). This enzyme resembles invertebrate beta4-GalNAcT as well as mammalian beta4- galactosyltransferase (beta4-GalT) in acceptor specificity. It can, however, be clearly distinguished from the pituitary hormone-specific beta4-GalNAcT by its incapability of acting with an elevated activity on a glycoprotein substrate carrying a hormone-specific peptide motif. Furthermore, the GalNAcT activity appeared not to be due to a promiscuous action of a beta4-GalT as could be demonstrated by comparing the beta4-GalNAcT and beta4-GalT activities of the mammary gland, bovine colostrum, and purified beta4-GalT, by competition studies with UDP-GalNAc and UDP-Gal, and by use of an anti-beta4-GalT polyclonal inhibiting antibody. Interestingly, under conditions where mammalian beta4-GalT forms with alpha-lactalbumin (alpha-LA) the lactose synthase complex, the mammary gland beta4-GalNAcT was similarly induced by alpha-LA to act on Glc with an increased efficiency yielding the lactose analog GalNAcbeta1-->4Glc. This enzyme thus forms the second example of a mammalian glycosyltransferase the specificity of which can be modified by this milk protein. It is proposed that the mammary gland beta4-GalNAcT functions in the synthesis of lacdiNAc- based, complex-type glycans frequently occurring on bovine milk glycoproteins. The action of this enzyme is to be considered when aiming at the production of properly glycosylated protein biopharmaceuticals in the milk of transgenic dairy animals.   相似文献   

4.
Human blood group O plasma was found to contain an N-acetylgalactosaminyltransferase which catalyzes the transfer of N-acetylgalactosamine from UDP-GalNAc to Gal beta 1-->4Glc, Gal beta 1-->4GlcNAc, asialo-alpha 1-acid glycoprotein, and Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-ceramide, but not to Gal beta 1-->3GlcNAc. The enzyme required Mn2+ for its activity and showed a pH optimum at 7.0. The reaction products were readily hydrolyzed by beta-N-acetylhexosaminidase and released N-acetylgalactosamine. Apparent Km values for UDP-GalNAc, Mn2+, lactose, N-acetyllactosamine, and terminal N-acetyllactosaminyl residues of asialo-alpha 1-acid glycoprotein were 0.64, 0.28, 69, 20, and 1.5 mM, respectively. Studies on acceptor substrate competition indicated that all the acceptor substrates mentioned above compete for one enzyme, whereas the enzyme can be distinguished from an NeuAc alpha 2-->3Gal beta-1,4-N-acetylgalactosaminyltransferase, which also occurs in human plasma. The methylation study of the product formed by the transfer of N-acetylgalactosamine to lactose revealed that N-acetylgalactosamine had been transferred to the carbon-3 position of the beta-galactosyl residue. Although the GalNAc beta 1-->3Gal structure is known to have the blood group P antigen activity, human plasma showed no detectable activity of Gal alpha 1-->4Gal beta-1,3-N-acetylgalactosaminyltransferase, which is involved in the synthesis of the major P antigen-active glycolipid, GalNAc beta 1-->3Gal alpha 1-->4Gal beta 1-->4Glc-ceramide. Hence, the GalNAc beta 1-->3Gal beta 1-->4GlcNAc/Glc structure is synthesized by the novel Gal beta 1-->4GlcNAc/Glc beta-1,3-N-acetylgalactosaminyltransferase.  相似文献   

5.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize α1,3-fucosylated GlcNAc and terminal β-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal β-Gal, and the glycoconjugates lack the Lewis x (Lex) antigen or other related fucose-containing antigens, such as sialylated Lex, Lea, Leb Ley, or H-type 1. Direct assays of parasite extracts demonstrate the presence of an α1,3-fucosyltransferase (α1,3FT) and β1,4-N-acetylgalactosaminyltransferase (β1,4GalNAcT), but not β1,4-galactosyltransferase. The H. contortus α1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galα1→4GlcNAcβ1→3Galβ1→4Glc to form lacto-N-fucopentaose III Galβ1→ 4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glc, which contains the Lex antigen, and the acceptor lacdiNAc (LDN) GalNAcβ1→4GlcNAc to form GalNAcβ1→4[Fucα1 →3]GlcNAc. The α1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 μ M and a Vmax of 10.8 nmol-mg?1 h?1. The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The α1,3FT acts best with type-2 glycan acceptors (Galβ1→4GlcNAcβ1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus α1,3FT can synthesize the Lex antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.  相似文献   

6.
A UDP-Gal:Gal beta 1----4GlcNAc-R alpha 1----3- and a UDP-Gal:GlcNAc-R beta 1----4-galactosyltransferase have been purified 44,000- and 101,000-fold, respectively, from a Triton X-100 extract of calf thymus by affinity chromatography on UDP-hexanolamine-Sepharose and alpha-lactalbumin-Sepharose in a yield of 25-40%. Sodium dodecyl sulfate gel electrophoresis under reducing conditions revealed a major polypeptide species with a molecular weight of 40,000 and a minor form at Mr 42,000 for the alpha 1----3-galactosyltransferase and a major polypeptide with Mr 51,000 for the beta 1----4-galactosyltransferase. Analytical gel filtration on Sephadex G-100 yielded a monomeric form for each of the galactosyltransferases with Mr 43,000 and 59,000 respectively, in addition to peaks of activity at higher molecular weights. Isoelectric focussing of the alpha 1----3-galactosyltransferase revealed a significant charge heterogeneity with forms varying in pI values between 5.0 and 6.5. Acceptor specificity studies indicated that the purified alpha 1----3-galactosyltransferase was free from contaminating galactosyltransferase activities such as those involved in the synthesis of Gal beta 1----4GlcNAc-R and Gal beta 1----3GalNAc-R sequences, the blood group B determinant, the Pk antigen, trihexosylceramide, and ganglioside GM1. The alpha 1----3-galactosyltransferase appeared to be highly active with glycoproteins, oligosaccharides, and glycolipids having a terminal Gal beta 1----4GlcNAc beta 1----unit such as asialo-alpha 1-acid glycoprotein (Km = 1.25 mM), Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3Man beta 1----4GlcNAc (Km = 0.57 mM), and paragloboside. The action of the alpha 1----3-galactosyltransferase was found to be mutually exclusive with that of the NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase from bovine colostrum. In addition alpha 1----3-fucosylation of the N-acetylglucosamine residue in the preferred disaccharide acceptor structure completely blocked galactosylation of the alpha 1----3-galactosyltransferase.  相似文献   

7.
Six different glycosyltransferases that are active with glycosphingolipid substrates have been purified from Golgi-membranes after solubilization with detergents. It appears that GalT-4(UDP-Gal:GlcNAc-R1 beta 1-4GalT), GalNAcT-2(UDP-Gal:Gal alpha-R2 beta 1-3GalNAcT) and FucT-2(GDP-Fuc:Gal beta GlcNAc-R3 alpha 1-2FucT) are specific for oligosaccharides bound to ceramide or to a protein moiety. These are called CARS (carbohydrate recognition sites) glycosyltransferases (GLTs). On the other hand, GalT-3(UDP-Gal:GM2 beta 1-3GalT), GalNAcT-1(UDP-GalNAc:GM3 beta 1-4GalNAcT) and FucT-3 (GDP-Fuc:LM1 alpha 1-3FucT) recognize both hydrophobic moieties (fatty acid of ceramide) as well as the oligosaccharide chains of the substrates. These GLTs are called HY-CARS (hydrophobic and carbohydrate recognition sites). D-Erythro-sphingosine (100-500 microM) modulates the in vitro activities of these GLTs. Modulation depends on the binding of D-sphingosine to a protein backbone, perhaps on more than one site and beyond transmembrane hydrophobic domains. Control of GLTs by free D-sphingosine was suggested with the concomitant discovery of ceramide glycanase in rabbit mammary tissues. The role of free sphingosine as an in vivo homotropic modulator of glycosyltransferases is becoming apparent.  相似文献   

8.
We report the expression of 3 well-characterized adult Schistosoma mansoni glycan antigens among molluscan stages of the parasite. These antigens are LacdiNAc (LDN; GalNAcbeta1-4GlcNAc-R), fucosylated LacdiNAc (LDNF; GalNAc[Fucal-3]beta1-4GlcNAc-R), and Lewis x (Le(x); Gal[Fucalpha1-3]beta1-4GlcNAc-R). The presence of the glycans was determined by both immunoblot and immunohistological methods using monoclonal antibodies that specifically recognize each glycan epitope. Immunoblot analyses reveal that LDN and LDNF epitopes are expressed on many different glycoproteins, including eggs, mother sporocysts, daughter sporocysts, and cercariae, although LDN expression among daughter sporocysts is greatly reduced. LDN and LDNF epitopes are localized on the tegument and in the intrasporocyst cell masses of both in vitro-derived and in vivo-derived mother sporocysts and in the daughter sporocysts derived on day 16 after infection. Unexpectedly, high levels of LDN and LDNF glycans were detected in the infected, but not in the uninfected, snail hemolymph, suggesting that the infecting larvae secrete LDN and LDNF glycoconjugates into the snail hosts. In contrast, the expression of Le(x) antigen among the molluscan stages is highly restricted. Le(x) is present on a few high-molecular weight glycoproteins in eggs and cercariae but is undetectable in mother and daughter sporocysts. Taken together with our earlier studies on vertebrate stages of S. mansoni, these results show that LDN and LDNF glycans are conserved during schistosome development. The study further extends the evidence that Le(x) is a developmentally regulated antigen in schistosomes.  相似文献   

9.
The assembly of most of the ceramide-linked glycolipids (GSLs) in eukaryotic cells occurs in Golgi bodies. At least 18 different glycolipid:glycosyltransferases (GSL:GLTs) have been characterized, 10 of which have been solubilized. These GLTs can be classified into 2 distinct groups: 1) GLTs dedicated to either Dol-P-P-sugar(s) or ceramide-linked sugar(s); and 2) GLTs with dual loyalties (i.e., they compete with glycolipid- and glycoprotein-bound oligosaccharides). Studies with solubilized and purified GalNAcT-1 and GalNAcT-2 from embryonic chicken brains prove that GalNAcT-1 (UDP-GalNAc:GM3 beta 1-4GalNAcT) is specific for GSL, whereas GalNAcT-2 (UDP-GalNAc:Gb3 beta 1-3GalNAcT) can transfer to an oligosaccharide containing the alpha-linked terminal galactose. Similarly, GalT-3 (UDP-Gal:GM2 beta 1-3GalT) is more specific for ganglio-oligosaccharide and GalT-4 (UDP-Gal:Lc3 beta 1-4GalT) can transfer galactose to N-acetylglucosamine linked to p-nitrophenol, glycolipid or glycoprotein. Both GalT-3 and GalT-4 have been separated and purified from embryonic chicken brains. Studies with solubilized SAT-4 and SAT-3, from bovine spleen and embryonic chicken brains, respectively, suggest the existence of 2 different gene-expressed alpha 2-3SATs. The newly discovered FucT-3 (GDP-Fuc:NeuGc-iLc6-alpha 1-3FucT) from human colon carcinoma (Colo-205) has also been solubilized and separated from other GSL:GLTs. Using a new activity gel-Western blot combined technique, the molecular mass of this FucT-3 was determined to be 105 kDa.  相似文献   

10.
Connective tissue of the freshwater pulmonate Lymnaea stagnalis was shown to contain galactosyltransferase activity capable of transferring Gal from UDP-Gal in beta 1-3 linkage to terminal GalNAc of GalNAc beta 1-4GlcNAc-R [R = beta 1-2Man alpha 1-O(CH2)8COOMe, beta 1-OMe, or alpha,beta 1-OH]. Using GalNAc beta 1-4GlcNAc beta 1-2Man alpha-1-O(CH2)8COOMe as substrate, the enzyme showed an absolute requirement for Mn2+ with an optimum Mn2+ concentration between 12.5 mM and 25 mM. The divalent cations Mg2+, Ca2+, Ba2+ and Cd2+ at 12.5 mM could not substitute for Mn2+. The galactosyltransferase activity was independent of the concentration of Triton X-100, and no activation effect was found. The enzyme was active with GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe (Vmax 140 nmol.h-1.mg protein-1; Km 1.02 mM), GalNAc beta 1-4GlcNAc (Vmax 105 nmol.h-1.mg protein-1; Km 0.99 mM), and GalNAc beta 1-4GlcNAc beta 1-OMe (Vmax 108 nmol.h-1.mg protein-1; Km 1.33 mM). The products formed from GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe and GalNAc beta 1-4GlcNAc beta 1-OMe were purified by high performance liquid chromatography, and identified by 500-MHz 1H-NMR spectroscopy to be Gal beta 1-3GalNAc beta 1-4GlcNAc 1-OMe, respectively. The enzyme was inactive towards GlcNAc, GalNac beta 1-3 GalNAc alpha 1-OC6H5, GalNAc alpha 1--ovine-submaxillary-mucin, lactose and N-acetyllactosamine. This novel UDP-Gal:GalNAc beta 1-4GlcNAc-R beta 1-3-galactosyltransferase is believed to be involved in the biosynthesis of the hemocyanin glycans of L. stagnalis.  相似文献   

11.
Schistosoma mansoni is a parasitic trematode infecting humans and animals. We reported previously that adult S. mansoni synthesizes complex type biantennary N-glycans bearing the terminal sequence GalNAc beta 1-->4GlcNAc-R (lacdiNAc or LDN). We now report that mice infected with S. mansoni generate antibodies to LDN, as assessed by ELISA using a synthetic neoglycoconjugate containing LDN sequences. Sera of infected mice, but not uninfected mice, contained primarily IgM and low levels of IgG toward LDN. Interestingly, these antibodies also recognize bovine milk glycoproteins, which are known to express LDN sequences. The anti-LDN in sera of infected mice were affinity purified on immobilized bovine milk glycoproteins and shown to specifically bind LDN. An IgM monoclonal antibody (SMLDN1.1) was derived from the spleens of S. mansoni infected mice and shown to specifically bind LDN determinants. Immunoblots with affinity purified anti-LDN and SMLDN1.1 demonstrate that LDN sequences occur primarily on N-glycans of numerous glycoproteins of adult S. mansoni. LDN sequences are also expressed in many glycoproteins from S. japonicum and S. haematobium. The availability of antibody to LDN determinants should aid in defining the roles of these glycans in helminth and vertebrate biology.  相似文献   

12.
Using a number of branched and unbranched oligosaccharides, glycoproteins and artificial glycoproteins bearing Gal(beta 1-4)GlcNAc-R termini as acceptors (where R represents H, oligosaccharide, oligosaccharide-protein or fatty acid-protein), the comparative rates of transfer of NeuAc by the Gal(beta 1-4)GlcNAc(NeuAc-Gal) (alpha 2-6)-sialyltransferase of embryonic chicken liver were determined. Acceptor substrates were utilized at levels approximating physiological, near the Km value of the best acceptor, desialylated alpha 1 acid glycoprotein. The sialyltransferase has a marked preference for multi-branched acceptors. From the specificity data, it is concluded that the enzyme binds at least two Gal(beta 1-4)GlcNAc termini of an acceptor molecule, and that the relative orientation of the branches is an important factor determining the rate of catalysis by the enzyme. The use of oligosaccharides as acceptors to study sialyltransferase catalyses is emphasized. Results are discussed in the context of the mode of assembly of sialoside termini of known glycoprotein structures in vivo.  相似文献   

13.
Previous studies (Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1369-1373; Galili, U., Shohet, S. B., Korbrin, E., Stults, C. L. M., and Macher, B. A. (1988) J. Biol. Chem. 263, 17755-17762) have established that there is a unique evolutionary distribution of glycoconjugates carrying the Gal alpha 1-3Gal beta 1-4GlcNAc epitope. These glycoconjugates are expressed by cells from New World monkeys and non-primate mammals, but not by cells from humans, Old World monkeys, or apes. The lack of expression of this epitope in the latter species appears to result from the suppression of gene expression for the enzyme UDP-galactose:nLc4Cer alpha 1-3-galactosyltransferase (alpha 1-3GalT) (Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L. (1989) J. Biol. Chem. 264, 14290-14297). Although many non-primate species are known to express this carbohydrate epitope, the nature (i.e. glycoprotein or glycosphingolipid) of the glycoconjugate carrying this epitope is only known for a few tissues in a few animal species. Furthermore, it is not known whether all animal species express this epitope in the same tissues. We have investigated these questions by analyzing the glycosphingolipids in kidney from several non-primate animal species. Immunostained thin layer chromatograms of glycosphingolipids from sheep, pig, rabbit, cow, and rat kidney with the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipid-specific monoclonal antibody, Gal-13, demonstrated that kidney from all of these species except rat contained Gal alpha 1-3Gal beta 1-4GlcNAc neutral glycosphingolipids. A lack of expression of Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids in rat may be due to the lack of expression of the enzyme (alpha 1-3GalT) which catalyzes the formation of the Gal alpha 1-3Gal nonreducing terminal sequence of these compounds or to the lack of expression of glycosyltransferases which are necessary for the synthesis of the neolacto core structure of these compounds. These possibilities were evaluated in two ways. First, the three enzymes (UDP-N-acetylglucosamine:LacCer beta 1-3-N-acetyl-glucosaminyltransferase, UDP-galactose:Lc3Cer beta 1-4-galactosyltransferase, and alpha 1-3GalT) involved in the synthesis of the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids were assayed using an enzyme-linked immunosorbent assay-based assay system and carbohydrate sequence-specific monoclonal antibodies. Second, TLC immunostaining was done to determine if the glycosphingolipid precursors (i.e. Lc3Cer and nLc4Cer) are expressed in rat kidney. Interestingly, rat kidney had a relatively high level of alpha 1-3GalT activity compared with the other animals tested.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
An N-acetylglucosaminyltransferase has been partially purified from Novikoff tumor cell ascites fluid by affinity chromatography on concanavalin A-Sepharose. The enzyme was obtained in a highly concentrated form after lyophilization. The enzyme appeared to be highly specific for acceptor oligosaccharides and glycoproteins carrying a terminal Gal beta 1----4GlcNAc beta 1----R unit. Characterization of products formed by the enzyme in vitro by methylation analysis and 1H NMR spectroscopy revealed that the enzyme catalyzed the formation of a GlcNAc beta 1----3Gal beta 1----4GlcNAc beta-R sequence. The enzyme therefore could be described as an UDP-GlcNAc:Gal beta 1----4GlcNAc beta-R beta 1----3-N-acetylglucosaminyltransferase. Acceptor specificity studies with oligosaccharides that form part of N-glycans revealed that the presence of a Gal beta 1----4GlcNAc beta 1----2(Gal beta 1----4GlcNAc beta 1----6)Man pentasaccharide in the acceptor structure is a requirement for optimal activity. Studies on the branch specificity of the enzyme showed that the branches of this pentasaccharide structure, when contained in tri- and tetraantennary oligosaccharides, are highly preferred over other branches for attachment of the 1st and 2nd mol of GlcNAc into the acceptor molecule. The enzyme also showed activity toward oligosaccharides related to blood group I- and i-active polylactosaminoglycans. In addition the enzyme together with calf thymus UDP-Gal:GlcNAc beta-R beta 1----4-galactosyltransferase was capable of catalyzing the synthesis of a series of oligomers of N-acetyllactosamine. Competition studies revealed that all acceptors were acted upon by a single enzyme species. It is concluded that the N-acetylglucosaminyltransferase functions in both the initiation and the elongation of polylactosaminoglycan chains of N-glycoproteins and possibly other glycoconjugates.  相似文献   

15.
N-Glycans from glycoproteins of the worm stage of the human parasite Schistosoma mansoni were enzymatically released, fluorescently labelled and analysed using various mass spectrometric and chromatographic methods. A family of 28 mainly core-alpha1-6-fucosylated, diantennary N-glycans of composition Hex(3-4)HexNAc(6-12)Fuc(1-6) was found to carry dimers of N,N'-diacetyllactosediamine [LacdiNAc or LDN; GalNAc(beta1-4)GlcNAc(beta1-] with or without fucose alpha1-3-linked to the N-acetylglucosamine residues in the antennae {GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-}. To date, oligomeric LDN and oligomeric fucosylated LDN (LDNF) have been found only on N-glycans from mammalian cells engineered to express Caenorhabditis elegansbeta4-GalNAc transferase and human alpha3-fucosyltransferase IX [Z. S. Kawar et al. (2005) J Biol Chem280, 12810-12819]. It now appears that LDN(F) repeats can also occur in a natural system such as the schistosome parasite. Like monomeric LDN and LDNF, the dimeric LDN(F) moieties found here are expected to be targets of humoral and cellular immune responses during schistosome infection.  相似文献   

16.
The binding of Toxin A isolated from Clostridium difficile to rabbit erythrocyte glycolipids has been studied. Total lipid extracts from rabbit erythrocytes were subjected to thin-layer chromatography and toxin-binding glycolipids detected by using 125I-labeled Toxin A in a direct binding overlay technique. Two major and several minor toxin-binding glycolipids were detected in rabbit erythrocytes by this method. The results of structural analyses of the major toxin-binding glycolipids were consistent with a pentasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) and a branched decasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3[Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) previously identified as the two most abundant glycolipids in rabbit erythrocytes. 125I-Toxin A binding to these glycolipids could be inhibited by bovine thyroglobulin, monospecific antiserum to the toxin, or by treatment of the glycolipids with alpha-galactosidase. The absence of toxin interaction with isoglobotriaosylceramide (Gal alpha 1-3Gal beta 1-4Glc-Cer) isolated from canine intestine suggested that the GlcNAc residue present in the terminal Gal alpha 1-3Gal beta 1-4GLcNAc sequence common to all known toxin binding glycoconjugates is required for carbohydrate-specific recognition by Toxin A. These observations are consistent with the proposed carbohydrate binding specificity of Toxin A for the nonreducing terminal sequence, Gal alpha 1-3Gal beta 1-4GlcNAc.  相似文献   

17.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   

18.
The carbohydrate moieties of glycosphingolipids from eggs of the human parasite, Schistosoma mansoni, were enzymatically released, labelled with 2-aminopyridine (PA), fractionated and analysed by linkage analysis, partial hydrolysis, enzymatic cleavage, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-electrospray ionization mass spectrometry. Apart from large, highly fucosylated structures with five to seven HexNAc residues, we found short, oligofucosylated species containing three to four HexNAc residues. Their structures have been determined as Fuc(alpha1-3)GalNAc(beta1-4)[ +/- Fuc (alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)GlcNAc(beta1-3)GalNAc(beta1-4) Glc-PA, Fuc(alpha1-3)GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-4) GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, and Fuc(alpha1-3) GalNAc(beta1-4)[ +/- Fuc(alpha1-2) +/- Fuc(alpha1-2)Fuc(alpha1-3)]Glc NAc(beta1-3)GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA. The last structure exhibits a trifucosyl sidechain previously identified on the cercarial glycocalyx. These structures stress the importance of 3-fucosylated GalNAc as a terminal epitope in schistosome glycoconjugates. To what degree these glycans contribute to the pronounced antigenicity of S. mansoni egg glycolipids remains to be determined. In addition, we have identified the compounds GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3) GalNAc (beta1-4)Glc-PA, the latter of which is a Lewis X-pentasaccharide identical to that present on cercarial glycolipids, as well as Gal(beta1-3)GalNAc(1-4)Gal(1-4)Glc-PA, which corresponds to asialogangliotetraosylceramide and is most probably derived from the mammalian host.  相似文献   

19.
20.
beta1,4-Galactosyltransferase I (Gal-T1) normally transfers Gal from UDP-Gal to GlcNAc in the presence of Mn(2+) ion. In the presence of alpha-lactalbumin (LA), the Gal acceptor specificity is altered from GlcNAc to Glc. Gal-T1 also transfers GalNAc from UDP-GalNAc to GlcNAc, but with only approximately 0.1% of Gal-T activity. To understand this low GalNAc-transferase activity, we have carried out the crystal structure analysis of the Gal-T1.LA complex with UDP-GalNAc at 2.1-A resolution. The crystal structure reveals that the UDP-GalNAc binding to Gal-T1 is similar to the binding of UDP-Gal to Gal-T1, except for an additional hydrogen bond formed between the N-acetyl group of GalNAc moiety with the Tyr-289 side chain hydroxyl group. Elimination of this additional hydrogen bond by mutating Tyr-289 residue to Leu, Ile, or Asn enhances the GalNAc-transferase activity. Although all three mutants exhibit enhanced GalNAc-transferase activity, the mutant Y289L exhibits GalNAc-transferase activity that is nearly 100% of its Gal-T activity, even while completely retaining its Gal-T activity. The steady state kinetic analyses on the Leu-289 mutant indicate that the K(m) for GlcNAc has increased compared to the wild type. On the other hand, the catalytic constant (k(cat)) in the Gal-T reaction is comparable with the wild type, whereas it is 3-5-fold higher in the GalNAc-T reaction. Interestingly, in the presence of LA, these mutants also transfer GalNAc to Glc instead of to GlcNAc. The present study demonstrates that, in the Gal-T family, the Tyr-289/Phe-289 residue largely determines the sugar donor specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号