首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dulvy NK 《Current biology : CB》2006,16(23):R989-R991
Populations of two coral reef shark species are declining rapidly: the pattern of decline highlights both the substantial impact of poaching on closed areas and the success of strict no-entry marine protected areas in maintaining healthy shark populations.  相似文献   

2.
3.
Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human‐driven land‐use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate‐driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold‐dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late.  相似文献   

4.
Rain forests on Borneo support exceptional concentrations of endemic insect biodiversity, but many of these forest-dependent species are threatened by land-use change. Totally protected areas (TPAs) of forest are key for conserving biodiversity, and we examined the effectiveness of the current TPA network for conserving range-restricted butterflies in Sabah (Malaysian Borneo). We found that mean diurnal temperature range and precipitation of the wettest quarter of the year were the most important predictors of butterfly distributions (= 77 range-restricted species), and that species richness increased with elevation and aboveground forest carbon. On average across all species, TPAs were effective at conserving ~43% of species’ ranges, but encompassed only ~40% of areas with high species richness (i.e., containing at least 50% of our study species). The TPA network also included only 33%–40% of areas identified as high priority for conserving range-restricted species, as determined by a systematic conservation prioritization analysis. Hence, the current TPA network is reasonably effective at conserving range-restricted butterflies, although considerable areas of high species richness (6,565 km2) and high conservation priority (11,152–12,531 km2) are not currently protected. Sabah's remaining forests, and the range-restricted species they support, are under continued threat from agricultural expansion and urban development, and our study highlights important areas of rain forest that require enhanced protection.  相似文献   

5.
The impact of climate change on the marine food web is highly uncertain. Nonetheless, there is growing consensus that global marine primary production will decline in response to future climate change, largely due to increased stratification reducing the supply of nutrients to the upper ocean. Evidence to date suggests a potential amplification of this response throughout the trophic food web, with more dramatic responses at higher trophic levels. Here we show that trophic amplification of marine biomass declines is a consistent feature of the Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System Models, across different scenarios of future climate change. Under the business‐as‐usual Representative Concentration Pathway 8.5 (RCP8.5) global mean phytoplankton biomass is projected to decline by 6.1% ± 2.5% over the twenty‐first century, while zooplankton biomass declines by 13.6% ± 3.0%. All models project greater relative declines in zooplankton than phytoplankton, with annual zooplankton biomass anomalies 2.24 ± 1.03 times those of phytoplankton. The low latitude oceans drive the projected trophic amplification of biomass declines, with models exhibiting variable trophic interactions in the mid‐to‐high latitudes and similar relative changes in phytoplankton and zooplankton biomass. Under the assumption that zooplankton biomass is prey limited, an analytical explanation of the trophic amplification that occurs in the low latitudes can be derived from generic plankton differential equations. Using an ocean biogeochemical model, we show that the inclusion of variable C:N:P phytoplankton stoichiometry can substantially increase the trophic amplification of biomass declines in low latitude regions. This additional trophic amplification is driven by enhanced nutrient limitation decreasing phytoplankton N and P content relative to C, hence reducing zooplankton growth efficiency. Given that most current Earth System Models assume that phytoplankton C:N:P stoichiometry is constant, such models are likely to underestimate the extent of negative trophic amplification under projected climate change.  相似文献   

6.
Aim We address the unexplored question of whether the lack of information on intra‐specific diversity inherent in species‐level niche modelling might bias evaluation of the conservation requirements of species and phylogeographic lineages under changing climates. We test for directional biases that might arise due to these methodological differences in ways of assessing risks from climate change. Location The African continent. Methods We identified from peer‐reviewed studies that used both nuclear and plastid markers the distribution of deep phylogeographic divisions within nine species of African mammals and their phylogeographic lineages. We fitted ecological niche models to describe currently suitable, occupied climates and to project the shift of suitable climate to two future time slices. We applied gap analysis to reveal potential changes in the protection of phylogeographic diversity owing to climatic shifts. Results We found that, within species, most phylogeographic lineages differ in the climates they experience and have substantial geographic separation. Models that do not distinguish these subspecific units often fail to identify potential risks of climate change to lineages. Modelled potential effects of climate change on the geographic extent of suitable climate vary in both direction and magnitude. Predictions of the persistence of suitable climate in current protected areas for the resident lineages differ on average by factor of 2 between species and lineage models. Main conclusions Our study develops an original synthetic approach by combining niche modelling, projected climate change, phylogeographic information and gap analysis. We clearly identify the potential benefits of using the new approach to evaluate risks to the conservation of intra‐specific genetic diversity that are posed by climate change. Our results suggest that prudent conservation strategies need to incorporate potential differences in climate tolerance among lineages when planning conservation measures for species confronted with environmental change.  相似文献   

7.
The potential effects of global climate changeon marine protected areas do not appear to havebeen addressed in the literature. This paperexamines the literature on protected areas,conservation biology, marine ecology,oceanography, and climate change, and reviewssome of the relevant differences between marineand terrestrial environments. Frameworks andclassifications systems used in protected areadesign are discussed. Finally, a frameworkthat summarizes some of the importantoceanographic processes and their links to thefood chain are reviewed. Species abundance anddistribution are expected to change as a resultof global climate change, potentiallycompromising the efficacy of marine protectedareas as biodiversity conservation tools. Thisreview suggests the need for: furtherinterdisciplinary research and the use oflinked models; an increase in marine protectedareas for biodiversity conservation and asresearch sites for teasing apart fishingeffects from climate effects; a temporallyresponsive approach to siting new marineprotected areas, shifting their locations ifnecessary; and large-scale ecosystem/integratedmanagement approaches to address the competinguses of the oceans and boundary-less threatssuch as global climate change and pollution.  相似文献   

8.
Reviews in Fish Biology and Fisheries - The potential effects of global climate changeon marine protected areas do not appear to havebeen addressed in the literature. This paperexamines the...  相似文献   

9.
Phenology of British butterflies and climate change   总被引:14,自引:0,他引:14  
Data from a national butterfly monitoring scheme were analysed to test for relationships between temperature and three phenological measures, duration of flight period and timing of both first and peak appearance. First appearances of most British butterflies has advanced in the last two decades and is strongly related to earlier peak appearance and, for multibrooded species, longer flight period. Mean dates of first and peak appearance are examined in relation to Manley's central England temperatures, using regression techniques. We predict that, in the absence of confounding factors, such as interactions with other organisms and land‐use change, climate warming of the order of 1 °C could advance first and peak appearance of most butterflies by 2–10 days.  相似文献   

10.
Being ectotherms, insects are predicted to suffer more severely from climate change than warm-blooded animals. We forecast possible changes in diversity and composition of butterflies, grasshoppers and dragonflies in Belgium under increasingly severe climate change scenarios for the year 2100. Two species distribution modelling techniques (Generalised Linear Models and Generalised Additive Models), were combined via a conservative version of the ensemble forecasting strategy to predict present-day and future species distributions, considering the species as potentially present only if both modelling techniques made such a prediction. All models applied were fair to good, according to the AUC (area under the curve of the receiver operating characteristic plot), sensitivity and specificity model performance measures based on model evaluation data. Butterfly and grasshopper diversity were predicted to decrease significantly in all scenarios and species-rich locations were predicted to move towards higher altitudes. Dragonfly diversity was predicted to decrease significantly in all scenarios, but dragonfly-rich locations were predicted to move upwards only in the less severe scenarios. The largest turnover rates were predicted to occur at higher altitudes for butterflies and grasshoppers, but at intermediate altitudes for dragonflies. Our results highlight the challenge of building conservation strategies under climate change, because the changes in the sites important for different groups will not overlap, increasing the area needed for protection. We advocate that possible conservation and policy measures to mitigate the potentially strong impacts of climate change on insect diversity in Belgium should be much more pro-active and flexible than is the case presently.  相似文献   

11.
Conservation evaluation of nine Hong Kong mangals   总被引:1,自引:1,他引:0  
A comparative analysis of the conservation value of nine Hong Kong mangals spread across Hong Kong has been undertaken. The analysis is based on both biological and socio-economic attributes. Biological attributes used in the analysis include plant species richness, benthic and arboreal gastropod species richness, occurrence of rare species within each site, and site representativeness. A review of the past and present development and development plans around and within each site has been undertaken to assess the comparative degree of hazard to each mangal. The drastic decline of mangal habitats throughout Hong Kong highlights the need for conservation of what remains today. Priorities and strategies for conservation of these nine mangals are discussed with particular emphasis on the preservation of biodiversity and the management of these habitats as education and research sites.Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic  相似文献   

12.
13.
14.
Kareiva P 《Current biology : CB》2006,16(14):R533-R535
Socioeconomic and ecological analyses of eleven coral reef conservation efforts make clear that marine protected areas are not the answer, and that in fact support of local communities is far more important than some government mandated 'fishing closure'. Apparently there are marine 'paper parks' just as there are terrestrial 'paper parks'.  相似文献   

15.
16.
17.
The rapid global decline of amphibian population is alarming because many occur for apparently unknown or enigmatic reasons, even inside protected areas (PAs). Some studies have predicted the effects of climate change on amphibians’ distribution and extinction, but the relationship and consequences of climate change to the phylogenetic structure of amphibian assemblages remain obscure. By applying robust techniques for ecological niche modeling and a cutting‐edge approach on community phylogenetics, here, we evaluate how climate change affects the geographical pattern of amphibian species richness and phylogenetic diversity in the Atlantic Forest Biodiversity Hotspot, Brazil, as well as how the phylogenetic composition of amphibian assemblages respond to climate change. We found that most species contracted their ranges and that such responses are clade specific. Basal amphibian clades (e.g. Gymnophiona and Pipidae) were positively affected by climate change, whereas late‐divergent clades (e.g. Cycloramphidae, Centrolenidae, Eleutherodactylidae, Microhylidae) were severely impacted. Identifying major changes in the phylogenetic pool represents a first step towards a better understanding of how assembly processes related to climate change will affect ecological communities. A deep analysis of the impacts of climate change not only on species, but also on the evolutionary relationships among species might foster the discussion on clade‐level conservation priorities for this imperiled fauna.  相似文献   

18.
The spatial extent of marine and terrestrial protected areas (PAs) was among the most intensely debated issues prior to the decision about the post-2020 Global Biodiversity Framework (GBF) of the Convention on Biological Diversity. Positive impacts of PAs on habitats, species diversity and abundance are well documented. Yet, biodiversity loss continues unabated despite efforts to protect 17% of land and 10% of the oceans by 2020. This casts doubt on whether extending PAs to 30%, the agreed target in the Kunming-Montreal GBF, will indeed achieve meaningful biodiversity benefits. Critically, the focus on area coverage obscures the importance of PA effectiveness and overlooks concerns about the impact of PAs on other sustainability objectives. We propose a simple means of assessing and visualising the complex relationships between PA area coverage and effectiveness and their effects on biodiversity conservation, nature-based climate mitigation and food production. Our analysis illustrates how achieving a 30% PA global target could be beneficial for biodiversity and climate. It also highlights important caveats: (i) achieving lofty area coverage objectives alone will be of little benefit without concomitant improvements in effectiveness, (ii) trade-offs with food production particularly for high levels of coverage and effectiveness are likely and (iii) important differences in terrestrial and marine systems need to be recognized when setting and implementing PA targets. The CBD's call for a significant increase in PA will need to be accompanied by clear PA effectiveness goals to reduce and revert dangerous anthropogenic impacts on socio-ecological systems and biodiversity.  相似文献   

19.
A method to assist identifying potential sites for seed collections for restoration plantings is demonstrated using the Atlas of Living Australia (ALA) and an example site near Albury (New South Wales). The mean annual temperature (MAT) and mean annual precipitation (MAP) of the example site are determined using the ALA. Data on likely changes in MAT and MAP are accessed from the ‘Climate Change in Australia’ website. The ALA's ‘define environmental envelope’ function is then used to identify areas currently experiencing conditions similar to the future climatic conditions projected for the site. Species distribution data in the ALA indicate locations where suitable provenances of the chosen species are likely to be present. In the case of trees, satellite images in the ALA can indicate whether isolated trees or extensive stands, that may be genetically diverse, exist at locations of interest. Shrublands, grasslands or wetlands may also be identified from the satellite images. The Monitoring, Evaluation, Reporting and Improvement Tool (MERIT) within the ALA can be used to identify existing trials that may already be using suitable provenances for the restoration site. Some considerations for provenance selection under climate change are outlined, as well as the advantages and limitations of using the ALA for this purpose.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号