首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
When selecting specific host plants, caterpillars of many lycaenid butterflies, such as the protected Pseudophilotes bavius hungarica, are known to engage in various interactions with ants, which help them survive. Although P. bavius is a protected species, data about its host plant selection is very scarce, and little information is available on its myrmecophilous relationships. Our aim was to identify the host plant characteristics that determine the occurrence of the caterpillar and to clarify the specificity of its myrmecophily. We conducted a series of field surveys regarding host plant characteristics. Laboratory experiments were carried out to investigate the nature of interactions between the caterpillar and its potential ant partners. Control experiments involving non-visiting ants were also performed. On the basis of our findings, the physical characteristics of host plants do not seem to influence host plant choice, but the absence of aphids and the presence of different ant species proved important. According to the results of behavioural assays, neutral reactions to the caterpillars were recorded in the case of ant species that regularly visited the host plant (Lasius paralienus, Camponotus aethiops), in contrast to Tapinoma subboreale, which was not observed at all on the host plants and which behaved aggressively towards the larvae. Therefore, the caterpillar is expected to show a certain ant host selectivity. The study constitutes an essential contribution to our knowledge of the natural history of a protected butterfly species, which can be used as a basis for more appropriate management strategies, while also shedding light on aspects of myrmecophilous relationships in Lycaenidae in general.  相似文献   

2.
Ant-hemipteran mutualisms are widespread interactions in terrestrial food webs with far-reaching consequences for arthropod communities. Several hypotheses address the behavioral mechanisms driving the impacts of this mutualism, but relatively few studies have considered multiple ant species simultaneously as well as interspecific and intraspecific variation in ant behavior. In a series of field experiments that manipulated ant diet, this work examines the role of induced behaviors of forest ant species actively engaged in mutualism with Hemiptera. Based on other work in ant mutualisms, we predicted a higher frequency of aggressive behaviors towards prey and competitors by ants in the presence of honeydew-producing Hemiptera. We specifically compared Camponotus chromaoides and Formica neogagates (Formicidae), two abundant species in temperate forests of the northeastern U.S.A. After manipulating ant diet and interactions with sap-feeders experimentally, we observed 494 one-on-one interactions between ants and competitors, ladybird beetles and caterpillar prey. We found that C. chromaoides, exhibited behavioral dominance over F. neogagates, and C. chromaoides was more likely to attack ladybird beetles, competing ants, and caterpillar prey. However, contrary to other work in ant-Hemipteran mutualisms, we observed no evidence that food rewards provided by sap-feeders induced changes in ant behavior for either ant species examined. These results reveal the importance of considering interspecific differences in behavior as a mechanism underlying the ecological impacts of ant-Hemipteran protection mutualisms.  相似文献   

3.
Myrmecophily is widespread in lycaenid butterflies, in which ants receive food resources and, in turn, protect caterpillars against natural enemies. This interaction ranges from obligate myrmecophily, in which immatures are invariably associated with ants and are dependent on ants for survival, and facultative myrmecophily, in which larvae are not dependent on ants for survival, but the presence of the latter may increase larvae survival. Lycaenids also include non-myrmecophilous butterflies, which do not have positive associations with ants and have developed strategies to avoid being attacked or preyed upon by them. In this study, we examined the relationship between the lycaenid Michaelus ira and two ant species associated with Distictella elongata (Bignoniaceae). This plant has extrafloral nectaries and is patrolled by Camponotus crassus and Ectatomma tuberculatum. Morphological analyses revealed that M. ira larvae have ant organs, such as dorsal nectary organs and perforated cupolas, structures associated with myrmecophily. We performed larval exposure experiments in the field, predicting that, in the absence of myrmecophily, the butterfly larva would present strategies to avoid ant attack. Results showed that larvae were attacked by both ant species. To escape ant molestation, larvae lived and fed inside silk-sealed D. elongata flower buds. We concluded that the M. ira bud-sheltering behavior was a defensive strategy against these ant species, while the dorsal nectary organs were apparently nonfunctional. Nonetheless, myrmecophily, in general, cannot be excluded in M. ira since relationships with other ant species may exist.  相似文献   

4.
Fourteen novel miniature inverted-repeat transposable element (MITE) families are found in the Florida carpenter ant genome, Camponotus floridanus. They constitute approximately 0.63 % of the entire genome. Analysis of their insertion time showed that most members of these MITEs were inserted into their host genome in less than 8 million years ago. In addition, the association between MITEs and the noncoding regions of genes in C. floridanus is random. Interestingly, an autonomous partner (named CfTEC) responsible for the amplification of these MITEs was also found in C. floridanus. Meanwhile, we present evidence, based on searches of publicly available databases, that this autonomous element was widespread in animals. Moreover, structure and phylogenetic analyses supported that TECs might represent a novel cade of transposons intermediate between the classic CACTA transposon and TRCs. Finally, their transposition mechanism and impact on host genome evolution were also discussed.  相似文献   

5.
Symbiosis between plants and ants include examples in which the plant provides shelter and/or food for ants that, in turn, act in the defense or in the dispersion of seeds from the host plant. Although traditionally referred as mutualistic, the results of these interactions may vary with the ecological context in which patterns are involved. A range of species have facultative association with Turnera subulata (Turneraceae). Here, using behavioral bioassays, we investigated the effects of the most frequent ant species associated with T. subulata (Brachymyrmex sp.1, Camponotus blandus (Smith), Dorymyrmex sp.1, Crematogaster obscurata Emery, and Solenopsis invicta Buren) in the dispersion of plant host seeds and in the number of seedlings around the associated ant nests. We also evaluated the effects of these ant species in the germination of T. subulata seeds, in the consumption of elaiosome, and in the attractiveness to elaiosome odor. Our results showed that the ant species associated with T. subulata presented variation in the attraction by the odor and in the rate of consumption of the elaiosomes. However, none of the ant species studied contributed significantly to the increase of seed germination and seedling growth. Our results suggest that the consumption of the elaiosome by ant species is not a determinant factor to the success of germination of T. subulata. However, such species could contribute indirectly to seed germination by carrying seeds to sites more fertile to germination. In general, our results help to elucidate the results of ecological interactions involving ants and plants.  相似文献   

6.
Macaranga is a tree genus that includes many species of myrmecophytes, which are plants that harbor ant colonies within hollow structures known as domatia. The symbiotic ants (plant–ants) protect their host plants against herbivores; this defense mechanism is called ‘ant defense’. A Bornean phasmid species Orthomeria cuprinus feeds on two myrmecophytic Macaranga species, Macaranga beccariana and Macaranga hypoleuca, which are obligately associated with Crematogaster ant species. The phasmids elude the ant defense using specialized behavior. However, the mechanisms used by the phasmid to overcome ant defenses have been insufficiently elucidated. We hypothesized that O. cuprinus only feeds on individual plants with weakened ant defenses. To test the hypothesis, we compared the ant defense intensity in phasmid-infested and non-infested M. beccariana trees. The number of plant–ants on the plant surface, the ratio of plant–ant biomass to tree biomass, and the aggressiveness of plant–ants towards experimentally introduced herbivores were significantly lower on the phasmid-infested trees than on the non-infested trees. The phasmid nymphs experimentally introduced into non-infested trees, compared with those experimentally introduced into phasmid-infested trees, were more active on the plant surface, avoiding the plant–ants. These results support the hypothesis and suggest that ant defenses on non-infested trees effectively prevent the phasmids from remaining on the plants. Thus, we suggest that O. cuprinus feeds only on the individual M. beccariana trees having decreased ant defenses, although the factors that reduce the intensity of the ant defenses remain unclear.  相似文献   

7.
An aphidophagous ladybird, Platynaspidius maculosus (Weise) (Coleoptera: Coccinellidae), is originally distributed in China, Taiwan, and Vietnam. The ladybird has recently intruded into the southern and central parts of Japan. The present study found that the larvae of this ladybird preyed on three aphid species, Aphis spiraecola, Aphis gossypii, and Toxoptera citricidus (all Hemiptera: Aphididae), feeding on young shoots of various Citrus species in August to early October in Shizuoka Prefecture, central Japan. Laboratory rearing of the sampled larvae confirmed that the larvae completed their development (adult emergence) by consuming each of the three aphid species. The ladybird larvae were observed foraging in aphid colonies attended by one of the four ants, Lasius japonicus, Pristomyrmex punctatus, Formica japonica, and Camponotus japonicus (all Hymenoptera: Formicidae). Field observations revealed that the foraging/feeding larvae were almost completely ignored by honeydew-collecting ants even when they physically contacted each other. Thus, in Japan, the larvae of the exotic ladybird exploit colonies of the three aphid species attended by one of the four ant species on many Citrus species. On the basis of the results, I discuss the possibility of the ladybird’s reproduction on citrus trees in Japan, probable adaptations of the ladybird larvae to aphid-attending ants, and potential impacts of the ladybird on native insect enemies attacking ant-attended aphids on citrus.  相似文献   

8.
Ant-related oviposition in facultatively myrmecophilous lycaenid butterflies is common, but not universal. In fact, our knowledge of ant-related oviposition in lycaenids is based on some common species (e.g., Rekoa marius, Allosmaitia strophius, Parrhasius polibetes), which limits generalizations about these systems. In this study, we experimentally investigated whether the oviposition pattern of the florivorous lycaenid Leptotes cassius was influenced by the presence of Camponotus ants and whether larvae were attended, rather than attacked, by ants. This might be evidence of myrmecophily. Both L. cassius and Camponotus ants occur on Bionia coriacea, an extrafloral nectaried legume shrub that grows in the Brazilian cerrado. Plants were randomly assigned to ant-present and ant-excluded treatments and were observed twice throughout the short reproductive season. Larvae of L. cassius were tended by ants, whose attendance was characterized by active antennation on the last body segments of the caterpillars. Therefore, Camponotus can be considered a partner of L. cassius. Lycaenid abundance was on average 1.9- and 1.21-fold higher in plants with ants in each sampling period, respectively, indicating a tendency of L. cassius to occur in plants with ants. Nonetheless, results were not statistically significant, suggesting that in this case ants are not a major cue for lycaenid oviposition. In many ant–lycaenid mutualisms, butterfly immatures benefit from reduced parasitism rates. However, no L. cassius immature, regardless of ant presence or absence, was parasitized. Furthermore, larvae may occur inside flower buds that may provide protection from natural enemies; thus, ants may not be required for immature protection.  相似文献   

9.

Background

The world is rapidly urbanizing, and only a subset of species are able to succeed in stressful city environments. Efficient genome-enabled stress response appears to be a likely prerequisite for urban adaptation. Despite the important role ants play in the ecosytem, only the genomes of ~13 have been sequenced so far. Here, we present the draft genome assembly of the black garden ant Lasius niger – the most successful urban inhabitant of all ants – and we compare it with the genomes of other ant species, including the closely related Camponotus floridanus.

Results

Sequences from 272 M Illumina reads were assembled into 41,406 contigs with total length of 245 MB, and N50 of 16,382 bp, similar to other ant genome assemblies enabling comparative genomic analysis. Remarkably, the predicted proteome of L. niger is significantly enriched relative to other ant genomes in terms of abundance of domains involved in nucleic acid binding, DNA repair, and nucleotidyl transferase activity, reflecting transposable element proliferation and a likely genomic response. With respect to environmental stress, we note a proliferation of various detoxification genes, including glutatione-S-transferases and those in the cytochrome P450 families. Notably, the CYP9 family is highly expanded with 19 complete and 21 nearly complete members - over twice as many compared to other ants. This family exhibits the signatures of strong directional selection, with eleven positively selected positions in ligand-binding pockets of enzymes. Gene family contraction was detected for several components of the olfactory system, accompanied by instances of both directional selection and relaxation.

Conclusions

Our results suggest that the success of L. niger in urbanized areas may be the result of fortuitous coincidence of several factors, including the expansion of the CYP9 cytochrome family due to coevolution with parasitic fungi, the diversification of DNA repair systems as an answer to proliferation of retroelements, and the reduction of olfactory system and behavioral preadaptations from non-territorial subdominant life strategies found in natural environments. Diversification of cytochromes and DNA repair systems along with reduced odorant communication are the basis of L. niger pollutant resistance and polyphagy, while non-territorial and mobilization strategies allows more efficient exploitation of large but patchy food sources.
  相似文献   

10.
Many organisms use chemicals to deter enemies. Some spiders can modify the composition of their silk to deter predators from climbing onto their webs. The Malaysian golden orb-weaver Nephila antipodiana (Walckenaer) produces silk containing an alkaloid (2-pyrrolidinone) that functions as a defense against ant invasion—ants avoid silk containing this chemical. In the present study, we test the generality of ants’ silk avoidance behavior in the field. We introduced three ant species to the orb webs of Nephila clavipes (Linnaeus) in the tropical rainforest of La Selva, Costa Rica. We found that predatory army ants (Eciton burchellii Westwood) as well as non-predatory leaf-cutting ants (Atta cephalotes Linnaeus and Acromyrmex volcanus Wheeler) avoided adult N. clavipes silk, suggesting that an additional species within genus Nephila may possess ant-deterring silk. Our field assay also suggests that silk avoidance behavior is found in multiple ant species.  相似文献   

11.
Recently, masses of the ant Formica (Serviformica) fuscocinerea (Forel) have been occurring at numerous sites in Southern Germany. Although F. fuscocinerea is native to Southern Germany, these mass occurrences resemble ant invasions in density and dominance. This study aimed to investigate the underlying mechanisms that promote sudden mass occurrence of a previously inconspicuous ant species within its native range. To estimate the competitive dominance of F. fuscocinerea, species occurrence and abundance considering biotic and abiotic parameters were studied in a natural habitat where F. fuscocinerea co-occurred with two other common ant species, Myrmica ruginodis (Nylander) and Lasius niger (Linnaeus). To understand the species’ distribution in the field, laboratory experiments on interspecific competition were conducted. Finally, the colony structure of F. fuscocinerea was investigated with intraspecific aggression tests. Formica fuscocinerea dominated an area that, as indicated by strongly frequented foraging trails on the trees, provided important food sources, e.g. trophobionts, to the ants. Other ant species coexisted only at the periphery of the F. fuscocinerea range. Laboratory experiments revealed F. fuscocinerea as highly dominant species. Additionally, F. fuscocinerea showed a complete lack of intraspecific aggression between ants originating from distances up to 58 km, indicating weak or nonexistent behavioral boundaries among ants of physically separated nests. Since extraordinarily high worker densities, strong interspecific dominance and a lack of colony boundaries within supercolonies are considered to be important traits of several invasive ant species we conclude that the same traits also promote the dominance of F. fuscocinerea.  相似文献   

12.
Extractive foraging in nonhuman primates may involve different levels of technical complexity in terms of the number of actions that must be performed and the manual dexterity involved. We describe the extractive foraging of caterpillars in wild northern pig-tailed macaques (Macaca leonina) at Khao Yai National Park, Thailand. The study group, observed from May to December 2016 (n = 146 days), comprised 60–70 habituated individuals, including 3–4 adult males, 20–23 adult females, and 36–47 immatures. Four adult males and five adult females, observed from September to November 2016 for a total of 24 days, were selected for focal animal sampling. Northern pig-tailed macaques were observed eating at least two families (Erebidae and Limacodidae) and three genera (Macrobrochis sp., Phlossa sp. and Scopelodes sp.) of caterpillars. While the monkeys ate short and small caterpillars with stinging setae and non-setae caterpillars without processing, they performed extensive caterpillar-rubbing behavior on large and long caterpillars with stinging setae. Based on 61 extractive foraging bouts, we found that caterpillar rubbing was hierarchically organized into five stages and 12 elements. Five stages of behavior sequence started with picking the caterpillar up, transporting it to a substrate, rubbing it to remove stinging setae, ingesting it, and then cleaning hands and mouth. Only adult macaques were observed using a leaf to rub stinging caterpillars.  相似文献   

13.
14.
Mexican ants of the genus Dolichoderus are revised. Five species of the genus are recorded: D. bispinosus (Olivier, 1792), D. diversus Emery, 1894, D. lutosus (Smith, 1858), D. mariae Forel, 1885 and D. plagiatus (Mayr, 1870). Dolichoderus tridentanodus Ortega-De Santiago et Vásquez-Bolaños, 2012 is synonymized with Camponotus mucronatus Emery, 1890. Early records of D. germaini Emery, 1894 and D. lugens Emery, 1894 from Mexico are misidentifications and those species are excluded from the list of the Mexican fauna. Dolichoderus mariae Forel, 1885 is newly reported for the fauna of Mexico. Identification key to Mexican Dolichoderus species is given.  相似文献   

15.
16.
Seed dispersal mutualisms are essential to ensure the survival of diverse plant species and communities worldwide. Here, we investigated whether the invasive Argentine ant can replace native ants by fulfilling their functional role in the seed dispersal of the rare and threatened endemic myrmecochorous plant, Anchusa crispa, in Corsica (France). Our study addressed the potential of Linepithema humile to disperse elaiosome-bearing seeds of A. crispa, examining L. humile’s effects on (1) the composition of communities of ants removing seeds, (2) the number of seed removals, (3) seed preference, (4) the distance of seed dispersion, and (5) seed germination. We caught seven native species at the control site, but only the Argentine ant at invaded sites. L humile removed A. crispa seeds in greater numbers than did native ants, respectively 66 and 23%, probably due to their higher worker density. The invader was similar to native ants with respect to distance of seed transport. Finally, rates of seed germination were not significantly different between seeds previously in contact with either Argentine ants or not. Taken all together, these results suggest that the Argentine ant is unlikely to pose a threat to A. crispa population. These results have important implications for the management of this rare and threatened endemic plant and provide an example of non-negative interactions between invasive and native species.  相似文献   

17.
In myrmecophilous insects, interactions with ants are often a key factor determining persistence of their populations. Regional variation in host ant use is therefore an essential aspect to consider to provide adequate conservation practices for such species. In this study, we examined this important facet of species’ ecology in an endangered myrmecophilous butterfly Phengaris (=Maculinea) alcon (Lepidoptera, Lycaenidae). The investigations conducted in peripheral populations in Estonia allowed us to expand the knowledge of its host ant use to the northern distribution limit of the species. Our data indicate that in its northernmost populations, the xerophilous ecotype of Phengaris alcon is primarily parasitizing a single host ant species, Myrmica schencki. The data collected are in line with the emerging evidence suggesting that peripheral and core populations of P. alcon use different host ants, and peripheral populations tend to display higher host ant specificity. We also show that, at its northern range margin, P. alcon might be more limited by the availability of its sole larval food plant in the region, Gentiana cruciata, than the densities of its host ant. Finally, we found a strong negative correlation between Myrmica spp. and Lasius spp. colony densities, suggesting that interspecific competition between ants could have a substantial influence on host ant availability of Phengaris butterflies, and thus should be taken into account in conservation plans of these species.  相似文献   

18.
A widespread rove beetle species, Philonthus rotundicollis, whose distribution range stretches across different climatic zones, including the coldest regions of the Asian northeast, was discovered as an inquiline within the nests of the carpenter ant Camponotus herculeanus on the coast of the Sea of Okhotsk in winter. It remained unclear if the beetles had significant cold-hardiness and whether they overwintered deep in the soil or were confined to particularly warm habitats. To clarify these aspects, the following metrics of cold-hardiness were measured: supercooling point (SCP), freezing point (FP), supercooling capacity (SCP-FP), and temperature minima at the beetles’ overwintering sites. In Ph. rotundicollis, mean SCP was -11.1 ± 0.7°C (ranging from - 7.9 to -18.8°C, n + 15), which was insufficient for successful overwintering even on the coast, since temperature minima in leaf litter during a snow-deficient winter fell to -14°C at the depth of 5 cm and -12°C at 20 cm. The beetles could not burrow deep into stiff soil and made use of crevices in dry peat-like soil layers as well as tunnels of soil- and rootdwelling animals, including carpenter ants. The presence of this rove beetle species in the ant nest was probably due to feeding on ant larvae because, at near-zero temperatures, the activity threshold of the beetles was lower than that of the ants that guarded the larvae.  相似文献   

19.
Multiple actinomycete strains were isolated from two ant species, Lasius niger and Formica cunicularia, and their phenotypic properties and phylogenetic position were studied. Partial sequencing of 16S rRNA assigned the greater part of them to the genus Streptomyces, but only one belonged to Nocardia. However, some isolates had significant color and morphological differences from their closest phylogenetic relatives. The abundance and biodiversity of actinomycete communities isolated from L. niger ants greatly exceeded those found for F. cunicularia. All of the actinomycetes associated with F. cunicularia ants demonstrated cellulolytic activity, but only one had such ability among the strains associated with black ants.  相似文献   

20.
Although mutualism between ants and flowering plants is wide spread, ant pollination has not evolved as a major pollination syndrome. So far ant pollination has been reported largely in herbaceous species, growing in warm and dry habitats. While studying pollination ecology of Syzygium species (Myrtaceae), growing in tropical forests of the Western Ghats, India, we observed one of the ant species, Technomyrmex albipes, to be the dominant floral visitor in S. occidentale (Bourd.) Chithra among a range of other insect (species of Xylocopa and Trigona, and Apis cerana) and bird visitors. We studied the role of ant species in pollination when compared to other floral visitors. The fruit set in flowers exclusively visited by T. albipes was significantly higher than those visited by any other visitor. The day and night exclusive pollination experiments allowing only T. albipes indicated diel pollination by T. albipes, which was the only active flower visitor during the night. The breeding system of the species was studied through controlled pollinations. The species is partially self-compatible and exhibits considerable autogamy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号