首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulatory functions of adenosine   总被引:1,自引:0,他引:1  
Adenosine has emerged as an important regulator of many physiological processes. This review briefly describes the formation and inactivation of the nucleoside, its effects in different tissues and the mechanism by which these effects are executed.  相似文献   

2.
This mini-review summarizes literature and original data about the role of microtubules in interphase animal cells. Recent data have shown that functioning of microtubules is essential for such diverse phenomena as directional cell movements, distribution of organelles in the cytoplasm, and neuronal memory in the central nervous system. It is suggested that microtubules can act as an important regulatory system in eukaryotic cells. Possible mechanisms of these functions are discussed.  相似文献   

3.
To understand how miRNA-mediated silencing impacts on embryonic mRNAs, we conducted a functional survey of abundant maternal and zygotic miRNA families in the C. elegans embryo. We show that the miR-35-42 and the miR-51-56 miRNA families define maternal and zygotic miRNA-induced silencing complexes (miRISCs), respectively, that share a large number of components. Using a cell-free C. elegans embryonic extract, we demonstrate that the miRISC directs the rapid deadenylation of reporter mRNAs with natural 3'UTRs. The deadenylated targets are translationally suppressed and remarkably stable. Sampling of the predicted miR-35-42 targets reveals that roughly half are deadenylated in a miRNA-dependent manner, but with each target displaying a distinct efficiency and pattern of deadenylation. Finally, we demonstrate that functional cooperation between distinct miRISCs within 3'UTRs is required to potentiate deadenylation. With this report, we reveal the extensive and direct impact of miRNA-mediated deadenylation on embryonic mRNAs.  相似文献   

4.
This review deals with the issue of growth autoregulation and survival in bacterial cultures under starvation conditions. Based on our results and on published data, the conclusion has been drawn that low-molecular products of metabolism (carboxylic acids, amino acids, and other metabolites) perform regulatory functions. The same compounds also control the ecological relationship between microorganisms at the interspecific level, and affect their antagonistic activity. It is suggested that complexes of bacterial metabolites can be used for controlling the composition of various microbiocenosis, including those of humans.  相似文献   

5.
This review deals with the issue of growth autoregulation and survival in bacterial cultures under starvation conditions. Based on our results and on published data, the conclusion has been drawn that low-molecular products of metabolism (carboxylic acids, amino acids, and other metabolites) perform regulatory functions. The same compounds also control the ecological relationship between microorganisms at the interspecific level, and affect their antagonistic activity. It is suggested that complexes of bacterial metabolites can be used for controlling the composition of various microbiocenosis, including those of humans.  相似文献   

6.
7.
In this brief review three functions of the coronary endothelium are surveyed: (a) its barrier and exchange function, (b) the prevention of coagulation and platelet aggregation, and (c) its role in vasoregulation. Impairment of these functions can occur in ischemia, hypertension, arteriosclerosis and inflammation. (Mol Cell Biochem116: 163–169, 1992)  相似文献   

8.
9.
10.
Selenoprotein mRNAs are particular in several aspects. They contain a specific secondary structure in their 3'UTR, called Secis (selenocysteine inserting sequence), which is indispensable for selenocysteine incorporation, and they are degraded under selenium-limiting conditions according to their ranking in the hierarchy of selenoproteins. In the familiy of selenium-dependent glutathione peroxidases (GPx) the ranking is GI-GPx > or = PHGPx > cGPx = pGPx. This phenomenon was studied by mutually combining the coding regions of GI-GPx, PHGPx and cGPx with their 3'UTRs. HepG2 cells were stably transfected with the resulting constructs. Expression of glutathione peroxidases was estimated by activity measurement and Western blotting, the selenium-dependent mRNA stability by real-time PCR. Whereas 3'UTRs from stable PHGPx and GI-GPx could be exchanged without loss of stability, they were not able to stabilize cGPx mRNA. cGPx 3'UTR rendered GI-GPx and PHGPx mRNA unstable. Thus, cGPx mRNA contains selenium-responsive instability elements in both the translated and the untranslated region, which cannot be compensated by one of the stable homologs. Stabilizing efficiency of an individual GPx 3'UTR did not correlate with the efficiency of selenocysteine incorporation. PHGPx 3'UTR was equally effective as cGPx 3'UTR in enhancing GPx activity in all constructs, while GI-GPx 3'UTR showed a markedly lower efficacy. We conclude that different mRNA sequences and/or RNA-binding proteins might regulate mRNA stability and translation of selenoprotein mRNA.  相似文献   

11.
12.
13.
14.
A theoretical study is made on catalytic activities of allosteric enzymes in non-equilibrium systems. It is demonstrated that the amount of chemical flow catalyzed by allosteric enzymes in systems maintained far-from-equilibrium can be qualitatively different from that familiar in the near-equilibrium situations. To be more specific, a study is made of a system containing two chemical species, S and P, and an allosteric enzyme, E, which catalyzes the reaction of the interconversion between them. This system interacts with its environment in a way characterized by a set of controlled parameters. By this interaction the system is maintained far-from-equilibrium. More than one steady state is possible for a certain range of controlled parameters. For continuous changes of the controlled parameters, discontinuous transitions between the multiple steady states can occur. This new aspect of the enzyme kinetics of allosteric proteins may play a role in the regulation of metabolic flows within living cells.  相似文献   

15.
Comment on: Chow YH, et al. Cell Cycle 2010; 9:4922-30.  相似文献   

16.
Regulatory mechanisms and functions of MAP kinase signaling pathways   总被引:2,自引:0,他引:2  
Imajo M  Tsuchiya Y  Nishida E 《IUBMB life》2006,58(5-6):312-317
Mitogen-activated protein kinase (MAPK) pathways play central roles in controlling diverse cellular functions. They are finely regulated by several mechanisms, including scaffolding of their components, and phosphorylation/dephosphorylation and compartmentalization of MAPKs. A number of molecules have been identified as regulators involved in these mechanisms. They modulate the magnitude and the specificity of MAPK signaling, and thereby regulate the wide variety of signaling outputs. Recent studies have identified novel functions of the MAPK signaling pathways. It is becoming clear that strict regulation of the MAPK pathways underlies their manifold functions in numerous biological processes.  相似文献   

17.
李莉  杨杨  薛雷 《遗传》2010,32(2):115-121
Pax是一个在进化上相当保守的基因家族, 它们编码的产物是一组极为重要的转录调控因子, 并存在于从果蝇到人类的各种生物体中, 参与细胞内信号传导通路的调控, 在胚胎发育过程中对细胞分化、更新、凋亡起重要的调控作用, 影响器官和组织的形成。果蝇中已发现10个Pax基因家族成员, 它们对果蝇胚胎发育及成虫组织器官的分化有非常重要的调控作用。文章结合最新的研究进展, 就果蝇中Pax基因的结构、表达模式和主要功能做一简要综述。  相似文献   

18.
In recent years there has been intense investigation and rapid progress in our understanding of the cellular responses to various types of endogenous and exogenous DNA damage that ensure genetic stability. These studies have identified numerous roles for ubiquitylation, the post-translational modification of proteins with single ubiquitin or poly-ubiquitin chains. Initially discovered for its role in targeting proteins for degradation in the proteasome, ubiquitylation functions in a variety of regulatory roles to co-ordinate the recruitment and activity of a large number of protein complexes required for recovery from DNA damage. This includes the identification of essential DNA damage response genes that encode proteins directly involved in the ubiquitylation process itself, proteins that are targets for ubiquitylation, proteins that contain ubiquitin binding domains, as well as proteins involved in the de-ubiquitylation process. This review will focus on the regulatory functions of ubiquitylation in three distinct DNA damage responses that involve ubiquitin modification of proliferating cell nuclear antigen (PCNA) in DNA damage tolerance, the core histone H2A and its variant H2AX in double strand break repair (DSBR) and the Fanconi anaemia (FA) proteins FANCD2 and FANCI in cross link repair.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号