首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The algal flagellate Euglena grown photoautotrophically in L:D 3:3 displays a circadian rhythm of cell division. Oscillatory models for cell cycle (CDC) control (particularly those of the limit cycle variety) include the property of phase perturbation, or resetting. This prediction has been tested in synchronous cultures in which the free-running rhythm has been scanned by 3-hr light signals. A strong (Type 0) phase response curve (PRC), yielding both advances and delays as great as 15 hr, has been derived. A second prediction of the limit cycle model is that there exists a pulse of a critical intensity, which, if given at one specific phase of the rhythm (the singularity point), should result in a phaseless, motionless state in which the rhythmicity disappears. Such a point has been found in Euglena in the late subjective night for light pulses having an intensity ranging from 40 to 700 Ix. Finally, circadian oscillators typically display temperature-compensated period lengths within the physiological range of steady-state temperatures, although the length of the CDC is commonly thought to be highly temperature dependent. We have found that over a range of at least 10°C, the period of the division rhythm is only slightly affected, exhibiting a Q10 of about 1.05-1.20. These observations, therefore, collectively implicate a circadian oscillator in the control of the CDC.  相似文献   

2.
Temperature compensation of their period is one of the canonical characteristics of circadian rhythms, yet it is not restricted to circadian rhythms. This short review summarizes the evidence for ultradian rhythms, with periods from 1 minute to several hours, that likewise display a strict temperature compensation. They have been observed mostly in unicellular organisms in which their constancy of period at different temperatures, as well as under different growth conditions (e.g., medium type, carbon source), indicates a general homeostasis of the period. Up to eight different parameters, including cell division, cell motility, and energy metabolism, were observed to oscillate with the same periodicity and therefore appear to be under the control of the same central pacemaker. This suggests that these ultradian clocks should be considered as cellular timekeeping devices that in fast-growing cells take over temporal control of cellular functions controlled by the circadian clock in slow-growing or nongrowing cells. Being potential relatives of circadian clocks, these ultradian rhythms may serve as model systems in chronobiolog-ical research. Indeed, mutations have been found that affect both circadian and ultradian periods, indicating that the respective oscillators share some mechanistic features. In the haploid yeast Schizosaccharomyces pombe, a number of genes have been identified where mutation, deletion, or overex-pression affect the ultradian clock. Since most of these genes play roles in cellular metabolism and signaling, and mutations have pleiotropic effects, it has to be assumed that the clock is deeply embedded in cellular physiology. It is therefore suggested that mechanisms ensuring temperature compensation and general homeostasis of period are to be sought in a wider context. (Chronobiology International, 14(5), 469–479, 1997)  相似文献   

3.
Both pulsed and continuous applications of the RNA polymerase II inhibitor thiolutin cause a dramatic but reversible loss of bioluminescence and its overt rhythmicity in cells of the dinoflagellate Lingulodinium polyedrum (formerly Gonyaulax polyedra). Such cells remain alive, and the rhythm resumes after an interval, the length of which depends on the concentration of thiolutin used. The period and phase of the resumed rhythm were not systematically altered following such treatments, and the effects were not different at different circadian phases. For three different genes, luciferin binding protein (lbp), luciferase (lcf), and glyceraldehyde-3-phosphate dehydrogenase (gapdh), which are circadian-regulated at the level of translation, the amounts of their mRNAs were determined by Northern blots for times up to 12.5h following the addition of 1.5 µM thiolutin. Consistent with previous reports that their abundances do not change with circadian time, their levels remained high for several hours after thiolutin addition, but then did diminish.  相似文献   

4.
Restricted feeding during the resting period causes pronounced shifts in a number of peripheral clocks, but not the central clock in the suprachiasmatic nucleus (SCN). By contrast, daily caloric restriction impacts also the light-entrained SCN clock, as indicated by shifted oscillations of clock (PER1) and clock-controlled (vasopressin) proteins. To determine if these SCN changes are due to the metabolic or timing cues of the restricted feeding, mice were challenged with an ultradian 6-meals schedule (1 food access every 4 h) to abolish the daily periodicity of feeding. Mice fed with ultradian feeding that lost <10% body mass (i.e. isocaloric) displayed 1.5-h phase-advance of body temperature rhythm, but remained mostly nocturnal, together with up-regulated vasopressin and down-regulated PER1 and PER2 levels in the SCN. Hepatic expression of clock genes (Per2, Rev-erbα, and Clock) and Fgf21 was, respectively, phase-advanced and up-regulated by ultradian feeding. Mice fed with ultradian feeding that lost >10% body mass (i.e. hypocaloric) became more diurnal, hypothermic in late night, and displayed larger (3.5 h) advance of body temperature rhythm, more reduced PER1 expression in the SCN, and further modified gene expression in the liver (e.g. larger phase-advance of Per2 and up-regulated levels of Pgc-1α). While glucose rhythmicity was lost under ultradian feeding, the phase of daily rhythms in liver glycogen and plasma corticosterone (albeit increased in amplitude) remained unchanged. In conclusion, the additional impact of hypocaloric conditions on the SCN are mainly due to the metabolic and not the timing effects of restricted daytime feeding.  相似文献   

5.
As soon as they hatch, gallinaceous chicks follow broody hens. This matriarchal unit presents a temporal organization of activity. The ontogeny of this ultradian rhythm of activity was followed in Japanese quail during their first 3 weeks of life. Under controlled laboratory conditions, 12 groups of four chicks were recorded using an activity monitoring system. They were observed between the ages of 2 and 17 days. Chicks in groups presented an ultradian rhythm of activity, with a period that increased significantly from 14.3 ± 1.4 minutes when chicks were 2 days old to 26.0 ± 1.9 minutes when they were 16 days old. The increase of ultradian periodicity was particularly pronounced during their first and third weeks of life. Finally, the ultradian period was correlated positively with body weight of the chicks. (Chronobiology International, 17(6), 767-776, 2000)  相似文献   

6.
Three types of rhythmic movements of Phaseolus vulgaris L. (pole beans) were examined collectively and their characteristics compared. Although the ultradian rhythms of shoot circumnutation and leaf movement, as well as the circadian rhythm of leaf movement, occurred simultaneously, each rhythm could be expressed independently of the other two. Shoot circumnutation and ultradian leaf movements displayed the same period (80 min at 25°C and Q10⋍2), while the period of the circadian leaf movements was not temperature dependent (Q10⋍1). Interaction into the plant between two ultradian rhythms (shoot circumnutation and ultradian leaf movement) with the same period and coexistence in the pulvinus of an ultradian with a circadian rhythm are discussed.  相似文献   

7.
The rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic nucleus (SCN) underlies the manifestation of endogenous circadian rhythmicity in behavior and physiology. Recent evidence demonstrating rhythmic clock gene expression in non-SCN tissues suggests that functional clocks exist outside the central circadian pacemaker of the brain. In this investigation, the nature of an oscillator in peripheral blood mononuclear cells (PBMCs) is evaluated by assessing clock gene expression throughout both a typical sleep/wake cycle (LD) and during a constant routine (CR). Six healthy men and women aged (mean±SEM) 23.7±1.6 yrs participated in this five-day investigation in temporal isolation. Core body temperature and plasma melatonin concentration were measured as markers of the central circadian pacemaker. The expression of HPER1, HPER2, and HBMAL1 was quantified in PBMCs sampled throughout an uninterrupted 72 h period. The core body temperature minimum and the midpoint of melatonin concentration measured during the CR occurred 2:17±0:20 and 3:24 ±0:09 h before habitual awakening, respectively, and were well aligned to the sleep/wake cycle. HPER1 and HPER2 expression in PBMCs demonstrated significant circadian rhythmicity that peaked early after wake-time and was comparable under LD and CR conditions. HBMAL1 expression was more variable, and peaked in the middle of the wake period under LD conditions and during the habitual sleep period under CR conditions. For the first time, bi-hourly sampling over three consecutive days is used to compare clock gene expression in a human peripheral oscillator under different sleep/wake conditions.  相似文献   

8.
Lloyd D 《Mitochondrion》2003,3(3):139-146
Protonophores have several different perturbative effects on dissolved O2 concentrations in continuous cultures of Saccharomyces cerevisiae. As well as uncoupling energy conservation from mitochondrial electron transport in vivo, they reset ultradian clock-driven respiratory oscillations and produce cell cycle effects. Thus, additions at low concentration (1.25 microM) of either m-chlorocarbonyl-cyanide phenylhydrazone (CCCP) or 5-chloro-3-t-butyl-2-chloro-4(1)-nitrosalicylanilide (S13) led to phase resetting of the 48 min ultradian clock-driven respiratory oscillations. At 2.5 microM CCCP or 4 microM S13, transient inhibition of oscillatory respiration (for 5 h) preceded synchronisation of the cell division cycle seen as a slow (9 h period) wave that enveloped the 48 min oscillation. At still higher concentrations of CCCP (5 microM), the cell division cycle was prolonged by about 7 h, and during this phase, the respiratory oscillation became undetectable. The significance of these observations with respect to the time-keeping functions of the ultradian clock is discussed.  相似文献   

9.
10.
This study investigates the relationship between the circadian clock and metabolism based on recordings of the extracellular pH in cultures of the marine dinoflagellate, Gonyaulax polyedra. In light-dark cycles, pH of the medium rises during the light phase and declines in the dark. The amplitude of this pH-rhythm correlates with light intensity, indicating photosynthesis (and respiration) as the driving force. The recorded extracellular pH changes probably reflect the need to control intracellular pH in spite of pH-modifying reactions. The daily pH-changes are under control of the circadian clock because they continue to oscillate with a circa-24 h period in constant light, albeit with a smaller amplitude. Similar to other circadian output rhythms, the pH rhythm depends (amplitude and phase) on nitrate levels in the medium. Both the bioluminescence and the pH rhythm can also be shifted by extracellular pH-changes although Gonyaulax is rarely exposed to significant pH changes in its marine ecosystems (except for highly dense algal blooms). Because intracellular proton levels are both affecting circadian input and output they form a feedback loop with the Gonyaulax circadian system indicating complex interactions between metabolism and the circadian clock.  相似文献   

11.
12.
The possibility that the 24h rhythm output is the composite expression of ultradian oscillators of varying periodicities was examined by assessing the effect of external continuously or pulsed (20-minute) Gonadotropinreleasing hormone (GnRH) infusions on in vitro luteinizing hormone (LH) release patterns from female mouse pituitaries during 38h study spans. Applying stepwise analyses (spectral, cosine fit, best-fit curve, and peak detection analyses) revealed the waveform shape of LH release output patterns over time is composed of several ultradian oscillations of different periods. The results further substantiated previous observations indicating the pituitary functions as an autonomous clock. The GnRH oscillator functions as a pulse generator and amplitude regulator, but it is not the oscillator that drives the ultradian LH release rhythms. At different stages of the estrus cycle, the effect of GnRH on the expression of ultradian periodicities varies, resulting in the modification of their amplitudes but not their periods. The functional output from the system of ultradian oscillators may superimpose a “circadian or infradian phenotype” on the observed secretion pattern. An “amplitude control” hypothesis is proposed: The temporal pattern of LH release is governed by several oscillators that function in conjunction with one another and are regulated by an amplitude-controlled mechanism. Simulated models show that such a mechanism results in better adaptive response to environmental requirements than does a single circadian oscillator. (Chronobiology International, 18(3), 399-412, 2001)  相似文献   

13.
A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf 01 ) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.  相似文献   

14.
The mammalian period (Per) genes, which are components of the circadian clock, are mainly regulated via an autoregulatory feedback loop. Here we provide evidence that human Per1 (hPER1) reporter gene activity shows circadian rhythmicity in a human neuroblastoma, but not in a astrocytoma or a hepatoma cell line. Medium change and various pharmacological stimuli differentially induce this behavior. This circadian oscillation was strongly dampened and could be followed over maximally three cycles. It was even possible to phase-shift the course of this oscillation by repeated application of stimuli.  相似文献   

15.
One approach to identifying components of the circadian oscillator is to screen for clock defects in mutants with known biochemical lesions. The chol-1 mutant of Neurospora crassa is defective in the first methylation step of phosphatidylcholine synthesis, the conversion of phosphatidylethanolamine to phosphatidylmonomethylethanolamine, and requires choline for normal growth. Choline depletion of this mutant inhibits growth and lengthens the period of the rhythm of conidiation. On high levels of choline (above 20 µM), the growth rate and the period of the rhythm are normal. Below about 10 µM choline, the growth rate and period length depend on the choline concentration, and the period is about 58 h on minimal medium without choline. Choline depletion decreases period stability, and replicate cultures do not remain in phase due to variability in period within each culture. At intermediate levels of choline (around 10 µM) cultures are often arrhythmic. The choline requirement for growth can be met by the phosphatidylcholine precursors monomethylethanolamine and dimethylethanolamine, and these supplements also restore a normal period. Choline depletion of the chol-1 strain exaggerates the rhythm in growth rate previously reported in a chol + strain. Growth rate during formation of a conidial band (measured as forward advance of the mycelial front) is less than half of the maximum rate during non-conidiating interband formation. Choline-depleted cultures can be entrained to light/dark (LD) cycles with periods near to their free-running periods. Cultures on 10 µM choline (with a free-running period of about 25 h) can be entrained to a 24 h (12:12) LD cycle, but not to a 36 h (18:18) or 48 h (24:24) LD cycle. Cultures on 0.5 µM choline (free-running period of about 52 h) or minimal medium (free-running period of about 58 h) can be entrained to 18:18 and 24:24 LD cycles, but not a 12:12 cycle. The phase relationship of the conidiation rhythm to the zeitgeber for low-choline cultures in LD 24:24 is similar to high choline cultures in LD 12:12. Continuous light abolishes rhythmicity in choline-depleted cultures. These results may indicate a role for membrane phospholipids, and the metabolites of phosphatidylcholine in particular, in the control of the period of the circadian oscillator in Neurospora .  相似文献   

16.
Whether a clock that generates a circatidal rhythm shares the same elements as the circadian clock is not fully understood. The mangrove cricket, Apteronemobius asahinai, shows simultaneously two endogenous rhythms in its locomotor activity; the circatidal rhythm generates active and inactive phases, and the circadian rhythm modifies activity levels by suppressing the activity during subjective day. In the present study, we silenced Clock (Clk), a master gene of the circadian clock, in A. asahinai using RNAi to investigate the link between the circatidal and circadian clocks. The abundance of Clk mRNA in the crickets injected with double-stranded RNA of Clk (dsClk) was reduced to a half of that in control crickets. dsClk injection also reduced mRNA abundance of another circadian clock gene period (per) and weakened diel oscillation in per mRNA expression. Examination of the locomotor rhythms under constant conditions revealed that the circadian modification was disrupted after silencing Clk expression, but the circatidal rhythm remained unaffected. There were no significant changes in the free-running period of the circatidal rhythm between the controls and the crickets injected with dsClk. Our results reveal that Clk is essential for the circadian clock, but is not required for the circatidal clock. From these results we propose that the circatidal rhythm of A. asahinai is driven by a clock, the molecular components of which are distinct from that of the circadian clock.  相似文献   

17.
Rhythmic gene expression in somite formation and neural development   总被引:1,自引:0,他引:1  
In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.  相似文献   

18.
The gymnotid electric fish, Eigenmannia virescens, exhibits electric discharge rhythmicity both in alternate light-dark (LD; 12h light, 12h dark [LD 12:12]) and in constant dark (DD) conditions. It suggests that the electric discharge rhythm is under control of the circadian clock. The free-running periods (FRPs) of electric discharge rhythms at 21°C in DD are greater than, but close to, 24h. The maximum of the electric discharge in the Eigenmannia system peaks approximately at circadian time 6 (CT6) in the middle of the subjective day. The circadian oscillator in the system is temperature compensated. This original report reveals the relationship between electric discharge activity and the circadian pacemaker in Eigenmannia and provides an alternative system to investigate circadian rhythms in vertebrates. (Chronobiology International, 17(1), 43-48, 2000)  相似文献   

19.
A continuous culture of Saccharomyces cerevisiae shows continuous autonomous oscillatory behaviour: this system is controlled by an ultradian clock. We used the most convenient observable (dissolved O 2 ) to assess the effects of various psychotropic agents on the period (t) and waveform of the oscillation. The threshold for a measurable perturbation by LiCl was between 10µM and 100µM; the value of t was increased from the normal 40 min to 50 min. Higher concentrations (up to 800µM), gave a dose-dependent period lengthening response to 68 min. At higher doses, the oscillation showed an abrupt transition to a state of higher complexity, where t ? 5 h. Recovery was also dose-dependent; this took 8 h at 100µM or 36 h at 600µM: at 1.2mM Li + organisms never recovered to a stable oscillatory state. Very high concentrations of inhibitors of monoamine oxidase type A + B (Phenelzine) or type A (Iproniazid) led to immediate period lengthening. The type B inhibitor (Pargyline) gave no detectable effect. Melatonin (1.5 mM), serotonin (1.5mM) dopamine (5 mM) or tyramine (2.5mM) were also without effect. The addition of glutamate perturbed the oscillation but did not cause a transient period lengthening.  相似文献   

20.
The possibility that the 24h rhythm output is the composite expression of ultradian oscillators of varying periodicities was examined by assessing the effect of external continuously or pulsed (20-minute) Gonadotropinreleasing hormone (GnRH) infusions on in vitro luteinizing hormone (LH) release patterns from female mouse pituitaries during 38h study spans. Applying stepwise analyses (spectral, cosine fit, best-fit curve, and peak detection analyses) revealed the waveform shape of LH release output patterns over time is composed of several ultradian oscillations of different periods. The results further substantiated previous observations indicating the pituitary functions as an autonomous clock. The GnRH oscillator functions as a pulse generator and amplitude regulator, but it is not the oscillator that drives the ultradian LH release rhythms. At different stages of the estrus cycle, the effect of GnRH on the expression of ultradian periodicities varies, resulting in the modification of their amplitudes but not their periods. The functional output from the system of ultradian oscillators may superimpose a “circadian or infradian phenotype” on the observed secretion pattern. An “amplitude control” hypothesis is proposed: The temporal pattern of LH release is governed by several oscillators that function in conjunction with one another and are regulated by an amplitude-controlled mechanism. Simulated models show that such a mechanism results in better adaptive response to environmental requirements than does a single circadian oscillator. (Chronobiology International, 18(3), 399–412, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号