首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 762 毫秒
1.
The structural determinants required for interaction of oligosaccharides with Ricinus communis agglutinin I (RCAI) and Ricinus communis agglutinin II (RCAII) have been studied by lectin affinity high-performance liquid chromatography (HPLC). Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with columns of silica-bound RCAI and RCAII. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. RCAI binds oligosaccharides bearing terminal beta 1,4-linked Gal but not those containing terminal beta 1,4-linked GalNAc. In contrast, RCAII binds structures with either terminal beta 1,4-linked Gal or beta 1,4-linked GalNAc. Both lectins display a greater affinity for structures with terminal beta 1,4-rather than beta 1,3-linked Gal, although RCAII interacts more strongly than RCAI with oligosaccharides containing terminal beta 1,3-linked Gal. Whereas terminal alpha 2,6-linked sialic acid partially inhibits oligosaccharide-RCAI interaction, terminal alpha 2,3-linked sialic acid abolishes interaction with the lectin. In contrast, alpha 2,3- and alpha 2,6-linked sialic acid equally inhibit but do not abolish oligosaccharide interaction with RCAII. RCAI and RCAII discriminate between N-acetyllactosamine-type branches arising from different core Man residues of dibranched complex-type oligosaccharides; RCAI has a preference for the branch attached to the alpha 1,3-linked core Man and RCAII has a preference for the branch attached to the alpha 1,6-linked core Man. RCAII but not RCAI interacts with certain di- and tribranched oligosaccharides devoid of either Gal or GalNAc but bearing terminal GlcNAc, indicating an important role for GlcNAc in RCAII interaction. These findings suggest that N-acetyllactosamine is the primary feature required for oligosaccharide recognition by both RCAI and RCAII but that lectin interaction is strongly modulated by other structural features. Thus, the oligosaccharide specificities of RCAI and RCAII are distinct, depending on many different structural features including terminal sugar moieties, peripheral branching pattern, and sugar linkages.  相似文献   

2.
K Yamashita  K Umetsu  T Suzuki  T Ohkura 《Biochemistry》1992,31(46):11647-11650
Two lectins were purified from tuberous roots of Trichosanthes japonica. The major lectin, which was named TJA-II, interacted with Fuc alpha 1-->2Gal beta/GalNAc beta 1-->groups, and the other one, which passed through a porcine stomach mucin-Sepharose 4B column, was purified by sequential chromatography on a human alpha 1-antitrypsin-Sepharose 4B column and named TJA-I. The molecular mass of TJA-I was determined to be 70 kDa by sodium dodecyl sulfate gel electrophoresis. TJA-I is a heterodimer of 38-kDa (36-kDa) and 32-kDa (30-kDa) subunits with disulfide linkage(s), and the difference between 38 and 36 kDa, and between 32 and 30 kDa, is due to secondary degradation of the carboxyl-terminal side. It was determined by equilibrium dialysis that TJA-I has four equal binding sites per molecule, and the association constant toward tritium-labeled Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4GlcOT is Ka = 8.0 x 10(5) M-1. The precise carbohydrate binding specificity was studied using hemagglutinating inhibition assay and immobilized TJA-I. A series of oligosaccharides possessing a Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc or HSO3(-)-->6Gal beta 1-->4GlcNAc group showed tremendously stronger binding ability than oligosaccharides with a Gal beta 1-->4GlcNAc group, indicating that TJA-I basically recognizes an N-acetyllactosamine residue and that the binding strength increases on substitution of the beta-galactosyl residue at the C-6 position with a sialic acid or sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The asparagine-linked sugar chains of fibronectin purified from human placenta were quantitatively released as oligosaccharides by hydrazinolysis. After N-acetylation, they were converted to radioactive oligosaccharides by NaB3H4 reduction. The radioactive oligosaccharides were fractionated by their charge on an anion-exchange column chromatography. All of the acidic oligosaccharides could be converted to neutral oligosaccharides by sialidase digestion. These oligosaccharides were then fractionated by serial affinity chromatography using immobilized lectin columns. Study of each oligosaccharide by sequential exoglycosidase digestion and methylation analysis revealed the following information as to the structures of the sugar chains of human placental fibronectin: 1) nine sugar chains are included in one molecule; 2) all sialic acid residues are exclusively linked at the C-3 position of the galactose residues; 3) bi-, tri-, and tetraantennary complex-type oligosaccharides with the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)-GlcNac as their cores were found; 4) the bisecting N-acetylglucosamine residue and the Gal beta 1----4GlcNAc beta 1----repeating groups are included in some of the sugar chains.  相似文献   

4.
The sialic acid-specific leukoagglutinating lectin from the seeds of Maackia amurensis (MAL) has been studied by the techniques of quantitative precipitin formation, hapten inhibition of precipitation, hapten inhibition using an enzyme-linked immunosorbent assay, and lectin affinity chromatography. The ability of the immobilized lectin to fractionate oligosaccharides based on their content of sialic acid has also been investigated. Our results indicate that MAL reacts with greatest affinity with the trisaccharide sequence Neu5Ac/Gc alpha 2,3Gal beta 1,4GlcNAc/Glc. The lectin requires three intact sugar units for binding and does not interact when the beta 1,4-linkage is replaced by a beta 1,3-linkage nor when the "reducing sugar" of the trisaccharide is reduced. Results from enzyme-linked immunosorbent assays show that an N-acetyllactosamine repeating sequence is not required; however, the N-acetyllactosamine repeating sequence does appear to enhance the binding of MAL to a series of glycolipids. In addition, the sialic acid may be substituted with either N-acetyl or N-glycolyl groups without reduction in binding. The C-8 and C-9 hydroxyl groups of sialic acid do not play a role in binding as shown by the strong reaction of periodate-treated glycoproteins. Comparison of the specificity of the three sialic acid-binding lectins indicates that Limax flavus agglutinin binds to Neu5Ac in any linkage and in any position in a glycoconjugate, Sambucus nigra lectin requires a disaccharide of the structure Neu5Ac alpha 2,6Gal/GalNAc, and MAL has a binding site complimentary to the trisaccharide Neu5Ac alpha 2,3Gal beta 1,4GlcNAc/Glc, to which sialic acid contributes less to the total binding affinity than for either S. nigra lectin or L. flavus agglutinin.  相似文献   

5.
Dramatic changes in glycan biosynthesis during oncogenic transformation result in the emergence of marker glycans on the cell surface. We analysed the N-linked glycans of L1CAM from different stages of melanoma progression, using high-performance liquid chromatography combined with exoglycosidase sequencing, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, and lectin probes. L1CAM oligosaccharides are heavily sialylated, mainly digalactosylated, biantennary complex-type structures with galactose β1-4/3-linked to GlcNAc and with or without fucose α1-3/6-linked to GlcNAc. Hybrid, bisected hybrid, bisected triantennary and tetraantennary complex oligosaccharides, and β1-6-branched complex-type glycans with or without lactosamine extensions are expresses at lower abundance. We found that metastatic L1CAM possesses only α2-6-linked sialic acid and the loss of α2-3-linked sialic acid in L1CAM is a phenomenon observed during the transition of melanoma cells from VGP to a metastatic stage. Unexpectedly, we found a novel monoantennary complex-type oligosaccharide with a Galβ1-4Galβ1- epitope capped with sialic acid residues A1[3]G(4)2S2-3. To our knowledge this is the first report documenting the presence of this oligosaccharide in human cancer. The novel and unique N-glycan should be recognised as a new class of human melanoma marker. In functional tests we demonstrated that the presence of cell surface α2-3-linked sialic acid facilitates the migratory behaviour and increases the invasiveness of primary melanoma cells, and it enhances the motility of metastatic cells. The presence of cell surface α2-6-linked sialic acid enhances the invasive potential of both primary and metastatic melanoma cells. Complex-type oligosaccharides in L1CAM enhance the invasiveness of metastatic melanoma cells.  相似文献   

6.
N-linked carbohydrate chains of the major 55-kDa family, PZP3, of porcine zona pellucida glycoproteins are composed of neutral (28%) and acidic (72%) complex-type chains. The structures of the main components of the neutral chain have been established [Noguchi, S., Hatanaka, Y., Tobita, T. & Nakano, M. (1992) Eur. J. Biochem. 204, 1089-1100]. Here we report the structures of the acidic chains. Only two kinds of acidic fragments were released from PZP3 by endo-beta-galactosidase digestion following beta-elimination of O-linked chains. 500-MHz one-dimensional and two-dimensional 1H-NMR spectroscopy revealed their structures to be Sia alpha(2-3)Gal beta(1-4) [HSO3-6]GlcNAc beta(1-3)Gal and HSO3-6GlcNAc beta(1-3)Gal, showing that the sulfate-containing acidic chains are constructed with non-branched N-acetyllactosamine repeats which have sialic acid(s) at the non-reducing end(s) and sulfate at the C-6 position of GlcNAc residues. The acidic N-linked chains obtained from PZP3 by hydrazinolysis were separated into diantennary chains (34%) and tri- and tetra-antennary chains (66%) by concanavalin-A--agarose gel chromatography. The diantennary chains and their sialidase digests were fractionated by DEAE-HPLC. From the analyses of the endo-beta-galactosidase digests of each fraction, structures of the diantennary acidic chains were determined. They are classified into four groups. The first group is the sialylated chains without the sulfated N-acetyllactosamine repeating unit. The other three groups have the chains of various lengths differing in the number of monosulfated N-acetyllactosamine unit. These chains are extended from the Man alpha(1-3) branch of the trimannosyl core in the second group, from the Man alpha(1-6) branch in the third group, and from both branches in the fourth group. The structural features of the tri- and tetra-antennary acidic chains are also presented.  相似文献   

7.
The carbohydrate-binding specificity of a novel plant lectin isolated from the seeds of Tetracarpidium conophorum (Nigerian walnut) has been studied by quantitative hapten inhibition assays and by determining the behavior of a number of oligosaccharides and glycopeptides on lectin-Sepharose affinity columns. The Tetracarpidium lectin shows preference for simple, unbranched oligosaccharides containing a terminal Gal beta 1----4GlNAc sequence over a Gal beta 1----3GlcNAc sequence and substitution by sialic acid or fucose of the terminal galactose residue, the subterminal N-acetylglucosamine or more distally located sugar residues of oligosaccharides reduce binding activity. Branched complex-type glycans containing either Gal beta 1----4GlcNAc or Gal beta 1----3GlcNAc termini bind with higher affinity than simpler oligosaccharides. The lectin shows highest affinity for a tri-antennary glycan carrying Gal beta 1----4GlcNAc substituents on C-2 and C-4 of Man alpha 1----3 and C-2 of Man alpha 1----6 core residues. Bi- and tri-glycans lacking this branching pattern bind more weakly. Tetra-antennary glycans and mono- and di-branched hybrid-type glycans also bind weakly to the immobilized lectin. Therefore, Tetracarpidium lectin complements the binding specificities of well-known lectins such as Datura stramonium agglutinin, Phaseolus vulgaris agglutinin, and lentil lectin and will be a useful additional tool for the identification and separation of complex-type glycans.  相似文献   

8.
To investigate the factors regulating the biosynthesis of poly-N-acetyllactosamine chains containing the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] in animal cell glycoproteins, we have examined the structures and terminal sequences of these chains in the complex-type asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Cells were grown in medium containing [6-3H]galactose, and radiolabeled glycopeptides were prepared and fractionated by serial lectin affinity chromatography. The glycopeptides containing the poly-N-acetyllactosamine chains in these cells were complex-type tri- and tetraantennary asparagine-linked oligosaccharides. The poly-N-acetyllactosamine chains in these glycopeptides had four different terminal sequences with the structures: I, Gal beta 1,4GlcNAc beta 1,3Gal-R; II, Gal alpha 1,3Gal beta 1,4GlcNac beta 1,3Gal-R; III, Sia alpha 2,3Gal beta 1,4GlcNAc beta 1,3Gal-R; and IV, Sia alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal-R. We have found that immobilized tomato lectin interacts with high affinity with glycopeptides containing three or more linear units of the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] and thereby allows for a separation of glycopeptides on the basis of the length of the chain. A high percentage of the long poly-N-acetyllactosamine chains bound by immobilized tomato lectin were not sialylated and contained the simple terminal sequence of Structure I. In addition, a high percentage of the sialic acid residues that were present in the long chains were linked alpha 2,3 to penultimate galactose residues (Structure III). In contrast, a high percentage of the shorter poly-N-acetyllactosamine chains not bound by the immobilized lectin were sialylated, and most of the sialic acid residues in these chains were linked alpha 2,6 to galactose (Structure IV). These results indicate that there is a relationship in these cells between poly-N-acetyllactosamine chain length and the degree and type of sialylation of these chains.  相似文献   

9.
Structures of the asparagine-linked sugar chains of laminin   总被引:13,自引:0,他引:13  
This investigation describes the isolation and characterization of oligosaccharides of the basement membrane glycoprotein, laminin. Pronase-released glycopeptides of isolated laminin, from a mouse Engelbreth-Holm-Swarm tumor, were fractionated using a combination of gel permeation chromatography and Con A-Sepharose affinity chromatography. The glycopeptides were analyzed for sugar linkage patterns by methylation analysis. Glycopeptides and hydrazine-released oligosaccharides were further analyzed using endo-beta-galactosidase, endo-beta-N-acetylglucosaminidase H and specific exoglycosidases in conjunction with calibrated gel permeation chromatography. Based on these experiments, murine tumor laminin was shown to contain asparagine-linked oligosaccharides with the following structures: bi-, tri- and tetraantennary complex-type oligosaccharides; polylactosaminyl side chains containing Gal(beta 1----4)GlcNAc(beta 1----3) repeating units attached to the trimannose core portion of the bi-, tri- and tetraantennary complex-type oligosaccharides; unusual complex-type oligosaccharides terminated at the nonreducing end with sialic acid, alpha-galactose, beta-galactose and beta-N-acetylglucosamine; alpha-galactosyl residues linked to N-acetyllactosamine sequences; high-mannose-type oligosaccharides. These results, in conjunction with analytical data, indicate that most of the carbohydrate of this laminin is N-linked to asparagine and that there are about 43 such N-linked oligosaccharides per laminin molecule.  相似文献   

10.
The carbohydrate-binding specificity of Aleuria aurantia lectin was investigated by analyzing the behavior of a variety of fucose-containing oligosaccharides on an A. aurantia lectin-Sepharose column. Studies with complex-type oligosaccharides obtained from various glycoproteins by hydrazinolysis and their partial degradation fragments indicated that the presence of the alpha-fucosyl residue linked at the C-6 position of the proximal N-acetylglucosamine moiety is indispensable for binding to the lectin column. Binding was not affected by the structures of the outer chain moieties nor by the presence of the bisecting N-acetylglucosamine residue. These results indicated that A. aurantia lectin-Sepharose is useful for the group separation of mixtures of complex-type asparagine-linked sugar chains. Studies of glycosylated Bence Jones proteins indicated that this procedure is also applicable to intact glycoproteins. The behavior of oligosaccharides isolated from human milk and the urine of patients with fucosidosis indicated that the oligosaccharides with Fuc alpha 1----2Gal beta 1----4GlcNAc and Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups interact with the lectin, but less strongly than complex-type sugar chains with a fucosylated core. Lacto-N-fucopentaitol II, which has a Gal beta 1----3(Fuc alpha 1----4)GlcNAc group, interacts less strongly than the above two groups with the matrix. Oligosaccharides with Fuc alpha 1----2Gal beta 1----3GlcNAc and Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups showed almost no interaction with the matrix.  相似文献   

11.
A prominent lectin in the root tubers of Trichosanthes japonica was purified by affinity chromatography on a porcine stomach mucin-Sepharose column and termed TJA-II. The molecular mass of the native lectin was determined to be 64 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and TJA-II was separated into two different subunits of 33 and 29 kDa in the presence of 2-mercaptoethanol. The respective subunits contained mannose, N-acetylglucosamine, fucose, and xylose. It was determined by equilibrium dialysis to have two equal binding sites per molecule, the association constant toward tritium-labeled Fuc alpha 1-->2Gal beta 1-->3GlcNAc beta 1-->3Gal beta 1-->4GlcOT being K alpha = 3.05 x 10(5) M-1. The precise carbohydrate binding specificity of immobilized TJA-II was studied using various tritium-labeled oligosaccharides. A series of oligosaccharides possessing Fuc alpha 1-->2Gal beta 1--> or GalNAc beta 1--> groups at their nonreducing terminals showed stronger binding ability than ones with Gal beta 1-->GlcNAc (Glc) groups, indicating that TJA-II fundamentally recognizes a beta-galactosyl residue and the binding strength increases on substitution of the hydroxyl group at the C-2 position with a fucosyl or acetylamino group. This lectin column is useful for fractionating oligosaccharides or glycoproteins containing blood group type 1H, type 2H, and Sd antigenic determinants.  相似文献   

12.
Asparagine-linked sugar chains were quantitatively released as oligosaccharides from human IgG2 and IgG4 myeloma proteins by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Each oligosaccharide was isolated by serial lectin column chromatography. Study of their structures by sequential exoglycosidase digestion and methylation analysis, revealed that all of them were of the bi-antennary complex-type containing Man alpha 1-6(+/- GlcNAc beta 1-4)(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(+/- Fuc alpha 1-6)GlcNAc as core structures, and GlcNAc beta 1-, Gal beta 1-4GlcNAc beta 1- and Sia alpha 2-6Gal beta 1- in their outer chain moieties. However, the molar ratio of each oligosaccharide was different in each IgG sample, indicating that clonal variation is included in the sugar chain moieties of IgG molecules. One of the IgG2 contained four asparagine-linked sugar chains in one molecule, two on the Fc fragment and the remainder on the Fab fragment. The sugar chains in the Fc fragment contained much less galactose as compared with the Fab fragment.  相似文献   

13.
Milk of an Asian elephant (Elephas maximus), collected at 11 days post partum, contained 91 g/L of hexose and 3 g/L of sialic acid. The dominant saccharide in this milk sample was lactose, but it also contained isoglobotriose (Glc(alpha1-3)Gal(beta1-4)Glc) as well as a variety of sialyl oligosaccharides. The sialyl oligosaccharides were separated from neutral saccharides by anion exchange chromatography on DEAE-Sephadex A-50 and successive gel chromatography on Bio Gel P-2. They were purified by high performance liquid chromatography (HPLC) using an Amide-80 column and characterized by 1H-NMR spectroscopy. Their structures were determined to be those of 3'-sialyllactose, 6'-sialyllactose, monofucosyl monosialyl lactose (Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc), sialyl lacto-N-neotetraose c (LST c), galactosyl monosialyl lacto-N-neohexaose, galactosyl monofucosyl monosialyl lacto-N-neohexaose and three novel oligosaccharides as follows: Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, and Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. The higher oligosaccharides contained only the type II chain (Gal(beta1-4)GlcNAc); this finding differed from previously published data on Asian elephant milk oligosaccharides.  相似文献   

14.
This report describes the structure of novel complex-type Asn-linked oligosaccharides in glycoproteins synthesized by the human blood fluke, Schistosoma mansoni. Adult schistosome worm pairs (male and female) isolated from infected hamsters were metabolically radiolabelled with either [3H]glucosamine, [3H]mannose or [3H]galactose. The glycopeptides prepared by pronase digestion of the total glycoprotein fraction were isolated by affinity chromatography on columns of immobilized Concanavalin A (Con A) and Wisteria floribunda agglutinin (WFA). A subset of glycopeptides, designated IIb, that bound to both Con A and WFA was isolated. WFA has been shown to have affinity for oligosaccharides containing beta 1,4-linked N-acetylgalactosamine (GalNAc) at their non-reducing termini. Compositional analysis of IIb glycopeptides demonstrated that they contained N-acetylglucosamine (GlcNAc), GalNAc, mannose (Man) and fucose (Fuc), but no galactose (Gal) or N-acetylneuraminic acid (NeuAc). Methylation analyses and exoglycosidase digestions indicated that IIb glycopeptides were complex-type biantennary structures with branches containing the sequence GalNAc beta 1-4-[+/- Fuc alpha 1-3]GlcNAc beta 1-2Man alpha 1-R. The discovery of these unusual oligosaccharides synthesized by a human parasite, which appear to be similar to some newly discovered mammalian cell-derived oligosaccharides, may shed light on future studies related to the role oligosaccharides may play in host-parasite interactions.  相似文献   

15.
The structures of the sugar chains present in two human monoclonal IgM molecules purified from the serum of a patient with Waldenstr?m's macroglobulinemia have been determined. The asparagine-linked sugar chains were liberated as oligosaccharides by hydrazinolysis and labeled by reduction with NaB3H4 after N-acetylation. Their structures were studied by serial lectin column chromatography and sequential exoglycosidase digestion in combination with methylation analysis. These two IgM's were shown to contain almost the same sugar chains. The sugar chains were a mixture of a series of high-mannose-type and biantennary complex-type oligosaccharides. The complex-type oligosaccharides contain Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc as their core and GlcNAc beta 1----, Gal beta 1----4GlcNAc beta 1---- and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

16.
The structural determinants required for interaction of oligosaccharides with leukoagglutinating phytohemagglutinin (L-PHA) and erythroagglutinating phytohemagglutinin (E-PHA) from Phaseolus vulgaris have been studied by immobilized lectin affinity chromatography. Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with columns of L- and E-PHA-agarose. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. In virtually all cases, L- and E-PHA yielded identical results, indicating that their specificities for reduced oligosaccharides are similar. Both lectins retarded oligosaccharides bearing alpha 2,3- but not alpha 2,6-linked sialic acid. Desialylated oligosaccharides containing one, two, three, or four peripheral N-acetyllactosamine-type branches were retarded to varying extents by both lectins; however, this interaction was decreased or eliminated by removal of Gal. Desialylated oligosaccharides containing a bisecting GlcNAc residue attached to the beta-linked core Man displayed the greatest interaction with both lectins. Structures containing terminal sulfate or GalNAc did not interact with either lectin. In some instances, the specificities of L- and E-PHA lectins for free, reduced oligosaccharides differed from those established using glycopeptides. Therefore, the structural requirements for interaction with lectins such as L- and E-PHA must be fully and systematically defined using the appropriate authentic standards in order to use lectin affinity chromatography for the fractionation and characterization of free oligosaccharides.  相似文献   

17.
The carbohydrate binding specificity of Psathyrella velutina lectin (PVL) was thoroughly investigated by analyzing the behavior of various complex-type oligosaccharides and human milk oligosaccharides on a PVL-Affi-Gel 10 column. Basically, the lectin interacts with the nonreducing terminal beta-N-acetylglucosamine residue, but does not show any affinity for the nonreducing terminal N-acetylgalactosamine or N-acetylneuraminic acid residue. Substitution of the terminal N-acetylglucosamine residues of oligosaccharides by galactose completely abolishes their affinity to the column. GlcNAc beta 1----3Gal beta 1----4sorbitol binds to the column, but GlcNAc beta 1----6Gal beta 1----4sorbitol is only retarded in the column. The behavior of degalactosylated N-linked oligosaccharides is quite interesting. Although all degalactosylated monoantennary sugar chain isomers are retarded in the column, those with the GlcNAc beta 1----2Man group interact more strongly with the column than those with the GlcNAc beta 1----4Man group or the GlcNAc beta 1----6Man group. The degalactosylated bi- and triantennary sugar chains bind to the column, but the tetraantennary ones are only retarded in the column. These results indicated that the binding affinity is not simply determined by the number of terminal N-acetylglucosamine residues. Addition of the bisecting N-acetylglucosamine residue reduces the affinity of oligosaccharides to the column, but addition of an alpha-fucosyl residue at the C-6 position of the proximal N-acetylglucosamine residue does not affect the behavior of oligosaccharides in the column. These results indicated that the binding specificity of PVL is quite different from those of other N-acetylglucosamine-binding lectins from higher plants, which interact preferentially with the GlcNAc beta 1----4 residue.  相似文献   

18.
Carbohydrates were extracted from high Arctic harbour seal milk, Phoca vitulina vitulina (family Phocidae). Free neutral oligosaccharides were separated by gel filtration and preparative thin layer chromatography, while free sialyl oligosaccharides were separated by gel filtration and then purified by ion exchange chromatography, gel filtration and high performance liquid chromatography. Oligosaccharide structures were determined by 1H-NMR spectroscopy. The structures of the neutral oligosaccharides were as follows: lactose, 2'-fucosyllactose, lacto-N-neotetraose, lacto-N-neohexaose, monofucosyl lacto-N-neohexaose and difucosyl lacto-N-neohexaose. Thus, all of the neutral saccharides contained lactose or lacto-N-neotetraose or lacto-N-neohexaose as core units and/or non-reducing alpha(1-2) linked fucose. These oligosaccharides have also been found in hooded seal milk. The structures of the silalyl oligosaccharides were: monosialyl lacto-N-neohexaose, monosialyl monofucosyl lacto-N-neohexaose, monosialyl difucosyl lacto-N-neohexaose and disialyl lacto-N-neohexaose. These oligosaccharides contained lacto-N-neohexaose as core units, and one or two alpha(2-6) linked Neu5Ac, and/or non-reducing alpha(1-2) linked Fuc. The Neu5Ac residues were found to be linked to GlcNAc or penultimate Gal residues. The acidic oligosaccharides are the first to have been characterized in the milk of any species of seal.  相似文献   

19.
The asparagine-linked sugar chains of the membrane of baby hamster kidney cells and their polyoma transformant were quantitatively released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides thus obtained were fractionated by paper electrophoresis. The neutral oligosaccharides of both cells were exclusively of high mannose type. The acidic oligosaccharides were bi-, tri-, and tetraantennary complex-type sugar chains with Man alpha 1----6 (Man alpha 1----3) Man beta 1----4 GlcNAc beta 1----4 (+/- Fuc alpha 1----6) GlcNAc as their cores and Gal beta 1----4 GlcNAc and various lengths of Gal beta 1----4 GlcNAc repeating chains in their outer-chain moieties. Prominent features of these acidic oligosaccharides are that all sialic acid residues were N-acetylneuraminic acid and were linked exclusively at C-3 of the nonreducing terminal galactose residues of the outer chains. Comparative study of oligosaccharides of the two cells by Bio-Gel P-4 column chromatography revealed that transformation of baby hamster kidney cells leads to a reduction in high mannose-type oligosaccharides and an increase in tetraantennary oligosaccharides. Increase of the outer chains linked at C-6 of the Man alpha 1----6 residue of the core is the cause of increase in the relative amount of highly branched oligosaccharides in the polyoma transformant.  相似文献   

20.
Fibronectin purified from human term amniotic fluid contains 10 asparagine-linked sugar chains in one molecule. The sugar chains were quantitatively liberated as radioactive oligosaccharides from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction and fractionated by anion-exchange column chromatography and serial lectin affinity chromatography. The structures of these sugar chains were determined by sequential exoglycosidase digestion in combination with methylation analysis. The results indicated that they are a mixture of bisected and non-bisected bi- and triantennary complex-type sugar chains with and without a fucose on the proximal N-acetylglucosamine residue and with Gal beta 1----4GlcNAc beta 1----, GlcNAc beta 1----, Neu5Ac alpha 2----3Gal beta 1----4GlcNAc beta 1----, and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号