首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To identify several strains of Mesorhizobium amorphae and Mesorhizobium tianshanense nodulating Cicer arietinum in Spain and Portugal, and to study the symbiotic genes carried by these strains. METHODS AND RESULTS: The sequences of 16S-23S intergenic spacer (ITS), 16S rRNA gene and symbiotic genes nodC and nifH were analysed. According to their 16S rRNA gene and ITS sequences, the strains from this study were identified as M. amorphae and M. tianshanense. The type strains of these species were isolated in China from Glycyrrhiza pallidiflora and Amorpha fruticosa nodules, respectively, and are not capable of nodulating chickpea. These strains carry symbiotic genes, phylogenetically divergent from those of the chickpea isolates, whose nodC and nifH genes showed more than 99% similarity with respect to those from Mesorhizobium ciceri and Mesorhizobium mediterraneum, the two common chickpea nodulating species in Spain and Portugal. CONCLUSIONS: The results from this study showed that different symbiotic genes have been acquired by strains from the same species during their coevolution with different legumes in distinct geographical locations. SIGNIFICANCE AND IMPACT OF THE STUDY: A new infrasubspecific division named biovar ciceri is proposed within M. amorphae and M. tianshanense to include the strains able to effectively nodulate Cicer arietinum.  相似文献   

2.
Several phenotypic markers were used in this study to determine the biodiversity of rhizobial strains nodulating Cicer arietinum L. in various areas of Tunisia. They include symbiotic traits, the use of 21 biochemical substrates, and tolerance to salinity and pH. In addition, restriction fragment length polymorphisms (RFLPs) of PCR-amplified 16S rDNA were compared with those of reference strains. Numeric analysis of the phenotypic characteristics showed that the 48 strains studied fell into three distinct groups. This heterogeneity was highly supported by the RFLP analysis of 16S rRNA genes, and two ribotypes were identified. Chickpea rhizobia isolated from Tunisian soils are both phenotypically and genetically diverse. Results showed that 40 and 8 isolates were assigned, respectively, to Mesorhizobium ciceri and Mesorhizobium mediterraneum.  相似文献   

3.
Thirty-five rhizobial strains were isolated from nodules of Lotus edulis, L. ornithopodioides, L. cytisoides, Hedysarum coronarium, Ornithopus compressus and Scorpiurus muricatus growing in Sardinia and Asinara Island. Basic characteristics applied to identification of rhizobia such as symbiotic properties, antibiotic- and salt-resistance, temperate-sensitivities, utilization of different sources of carbon and nitrogen were studied. The results from the 74 metabolic tests were used for cluster analysis of the new rhizobial isolates and 28 reference strains, belonging to previously classified and unclassified fast-, intermediate- and slow-growing rhizobia. All strains examined were divided into two large groups at a linkage distance of 0.58. None of the reference strains clustered with the new rhizobial isolates, which formed five subgroups almost respective of their plant origin. RFLP analysis of PCR-amplified 16S-23S rDNA IGS showed that the levels of similarity between rhizobial isolates from Ornithopus, Hedysarum and Scorpiurus, and the type strains of Rhizobium leguminosarum, Mesorhizobium loti, M. ciceri, M. mediterraneum, Sinorhizobium meliloti and Bradyrhizobium japonicum were not more than 30%. Thus, it can be assumed that these groups of new rhizobial isolates are not closely related to the validly described rhizobial species.  相似文献   

4.
The genus Mesorhizobium includes species nodulating several legumes, such as chickpea, which has a high agronomic importance. Chickpea rhizobia were originally described as either Mesorhizobium ciceri or M. mediterraneum. However, rhizobia able to nodulate chickpea have been shown to belong to several different species within the genus Mesorhizobium. The present study used a multilocus sequence analysis approach to infer a high resolution phylogeny of the genus Mesorhizobium and to confirm the existence of a new chickpea nodulating genospecies. The phylogenetic structure of the Mesorhizobium clade was evaluated by sequence analysis of the 16S rRNA gene, ITS region and the five core genes atpD, dnaJ, glnA, gyrB, and recA. Phylogenies obtained with the different genes are in overall good agreement and a well-supported, almost fully resolved, phylogenetic tree was obtained using the combined data. Our phylogenetic analyses of core genes sequences and their comparison with the symbiosis gene nodC, corroborate the existence of one new chickpea Mesorhizobium genospecies and one new symbiovar, M. opportunistum sv. ciceri. Furthermore, our results show that symbiovar ciceri spreads over six species of mesorhizobia. To our knowledge this study shows the most complete Mesorhizobium multilocus phylogeny to date and contributes to the understanding of how a symbiovar may be present in different species.  相似文献   

5.
用双脱氧法测定了一个根瘤菌新类群代表菌株SH2672的16S rDNA全序列,将此全序列与根瘤菌各已知种及相关种的16S rDNA全序列进行了比较及聚类分析,得到系统发育树状图。在系统发育树状图中,菌株SH2672与百脉根中慢生根瘤菌(Mesorhizobium loti),华癸中慢生根瘤菌(M. huakuii)、天山中慢生根瘤菌(M. tianshanense)、地中海中慢生根瘤菌(M. mediterraneum)、鹰嘴豆中慢生根瘤菌(M. ciceri)共同构成一个分支,与各已知种的模式菌株16S rDNA相似性分别为:96.3%,96.4%,97.2%,95.1%,95.6%,均在95%以上,它们应归属于同一属。且分支内各种间DNA同源性低于70%,表明它们分别为不同的种,菌株SH2672代表着一个新的根瘤菌种。  相似文献   

6.
Mesorhizobium ciceri, Mesorhizobium mediterraneum and Sinorhizobium medicae strains showed different symbiotic performances when inoculated to chickpea (Cicer arietinum L., cv. chetoui) at unstressed conditions and under salt stress. The analysis of nodular proteic composition and antioxidant enzyme activities revealed a polymorphism of patterns on SDS and native PAGE suggesting a potential dependence on the bacterial partner. Salt effect was analysed on plant growth, nitrogen fixation and antioxidant enzymes. M. ciceri, the most efficient strain, seemed to allow a best tolerance to chickpea plants under salt stress. This constraint did not affect the nodular superoxide dismutase (SOD, E.C. 1.15.1.1) activity of the symbiosis implicating the latter strain. This symbiosis showed the least decrease for the nodule protein level and the catalase (CAT, E.C. 1.11.1.6) activity, and the highest increase of peroxidase (POX, E.C. 1.11.1.7) activity that seemed to be related with the tolerance to salt.  相似文献   

7.
The multi-billion dollar asset attributed to symbiotic nitrogen fixation is often threatened by the nodulation of legumes by rhizobia that are ineffective or poorly effective in N(2) fixation. This study investigated the development of rhizobial diversity for the pasture legume Biserrula pelecinus L., 6 years after its introduction, and inoculation with Mesorhizobium ciceri bv. biserrulae strain WSM1271, to Western Australia. Molecular fingerprinting of 88 nodule isolates indicated seven were distinctive. Two of these were ineffective while five were poorly effective in N(2) fixation on B. pelecinus. Three novel isolates had wider host ranges for nodulation than WSM1271, and four had distinct carbon utilization patterns. Novel isolates were identified as Mesorhizobium sp. using 16S rRNA, dnaK and GSII phylogenies. In a second study, a large number of nodules were collected from commercially grown B. pelecinus from a broader geographical area. These plants were originally inoculated with M. c bv. biserrulae WSM1497 5-6 years prior to isolation of strains for this study. Nearly 50% of isolates from these nodules had distinct molecular fingerprints. At two sites diverse strains dominated nodule occupancy indicating recently evolved strains are highly competitive. All isolates tested were less effective and six were ineffective in N(2) fixation. Twelve randomly selected diverse isolates clustered together, based on dnaK sequences, within Mesorhizobium and distantly to M. c bv. biserrulae. All 12 had identical sequences for the symbiosis island insertion region with WSM1497. This study shows the rapid evolution of competitive, yet suboptimal strains for N(2) fixation on B. pelecinus following the lateral transfer of a symbiosis island from inoculants to other soil bacteria.  相似文献   

8.

Background and aims

Rhizobia associated with chickpea in the main chickpea production zone of Xinjiang, China have never been investigated. Here, we present the first systematic investigation of these rhizobia’s genetic diversity and symbiotic interactions with their host plant.

Methods

Ninety-five isolates obtained from chickpea nodules in eight alkaline-saline (pH?8.24–8.45) sites in Xinjiang were characterized by nodulation test, symbiotic gene analysis, PCR-based restriction fragment length polymorphism (RFLP) of the 16S rRNA gene and 16S–23S rRNA intergenic spacer (IGS), BOX-PCR, phylogenies of 16S rRNA and housekeeping genes (atpD, recA and glnII), multilocus sequence analysis (MLSA) and DNA–DNA hybridization.

Results

All 95 isolates were identified within the genus of Mesorhizobium. Similarities less than 96.5% in MLSA and DNA–DNA hybridization values (<50%) between the new isolates and the defined Mesorhizobium species, and high similarities (>98%) of symbiotic genes (nodC and nifH) with those of the well studied chickpea microsymbioints Mesorhizobium ciceri and Mesorhizobium mediterraneum were found.

Conclusions

Chickpea rhizobia in alkaline-saline soils of Xinjiang, China, form a population distinct from the defined Mesorhizobium species. All these chickpea rhizobia in Xinjiang harbored symbiotic genes highly similar to the type strains of two well-studied chickpea rhizobia, M. ciceri and M. mediterraneum, evidencing the possible lateral transfer of symbiotic genes among these different rhizobial species. On the other hand, chickpea may strongly select rhizobia with a unique symbiotic gene background.  相似文献   

9.
Diversity and taxonomic affiliation of chickpea rhizobia were investigated from Ningxia in north central China and their genomic relationships were compared with those from northwestern adjacent regions (Gansu and Xinjiang). Rhizobia were isolated from root-nodules after trapping by chickpea grown in soils from a single site of Ningxia and typed by IGS PCR-RFLP. Representative strains were phylogenetically analyzed on the basis of the 16S rRNA, housekeeping (atpD, recA and glnII) and symbiosis (nodC and nifH) genes. Genetic differentiation and gene flow were estimated among the chickpea microsymbionts from Ningxia, Gansu and Xinjiang. Fifty chickpea rhizobial isolates were obtained and identified as Mesorhizobium muleiense. Their symbiosis genes nodC and nifH were highly similar (98.4 to 100%) to those of other chickpea microsymbionts, except for one representative strain (NG24) that showed low nifH similarities with all the defined Mesorhizobium species. The rhizobial population from Ningxia was genetically similar to that from Gansu, but different from that in Xinjiang as shown by high chromosomal gene flow/low differentiation with the Gansu population but the reverse with the Xinjiang population. This reveals a biogeographic pattern with two main populations in M. muleiense, the Xinjiang population being chromosomally differentiated from Ningxia-Gansu one. M. muleiense was found as the sole main chickpea-nodulating rhizobial symbiont of Ningxia and it was also found in Gansu sharing alkaline-saline soils with Ningxia. Introduction of chickpea in recently cultivated areas in China seems to select from alkaline-saline soils of M. muleiense that acquired symbiotic genes from symbiovar ciceri.  相似文献   

10.
Thirty-three rhizobial strains isolated from the root nodules of Astragalus luteolus and Astragalus ernestii growing on the west plateau at two different altitudes in Sichuan province, China, were characterized by amplified rDNA restriction analysis (ARDRA), amplified fragment length polymorphism (AFLP), and by sequencing of rrs, glnA, glnII and nifH . The ARDRA analysis revealed considerable genomic diversity. In AFLP analysis, 20 of 33 Astragalus rhizobia formed three distinct clades, with others dispersed into different groups with the reference strains. Phylogenetic analysis of the rrs gene of six representative strains showed that the isolates were members of the genus Mesorhizobium . Three of the isolates formed a sister clade to Mesorhizobium loti and Mesorhizobium ciceri , whereas the other three formed a sister clade to a clade harboring the species Mesorhizobium huakuii, Mesorhizobium plurifarum, Mesorhizobium septentrionale and Mesorhizobium amorphae , indicating the existence of two new species. Phylogenetic analysis of glnA and glnII confirmed the rrs phylogenies for four strains, but the trees were incongruent. The nifH sequences of the strains formed a monophyletic clade and were typical of those of mesorhizobia forming symbioses with inverted repeat lacking clade legume species. The incongruent phylogenies of the genes studied suggest that horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plants.  相似文献   

11.
Nitrogen is often a limiting nutrient, therefore the sustainability of food crops, forages and green manure legumes is mainly associated with their ability to establish symbiotic associations with stem and root-nodulating N2-fixing rhizobia. The selection, identification and maintenance of elite strains for each host are critical. Decades of research in Brazil resulted in a list of strains officially recommended for several legumes, but their genetic diversity is poorly known. This study aimed at gaining a better understanding of phylogenetic relationships of 68 rhizobial strains recommended for 64 legumes, based on the sequencing of the 16S rRNA genes. The strains were isolated from a wide range of legumes, including all three subfamilies and 17 tribes. Nine main phylogenetic branches were defined, seven of them related to the rhizobial species: Bradyrhizobium japonicum, B. elkanii, Rhizobium tropici, R. leguminosarum, Sinorhizobium meliloti/S. fredii, Mesorhizobium ciceri/M. loti, and Azorhizobium caulinodans. However, some strains differed by up to 35 nucleotides from the type strains, which suggests that they may represent new species. Two other clusters included bacteria showing similarity with the genera Methylobacterium and Burkholderia, and amplification with primers for nifH and/or nodC regions was achieved with these strains. Host specificity of several strains was very low, as they were capable of nodulating legumes of different tribes and subfamilies. Furthermore, host specificity was not related to 16S rRNA, therefore evolution of ribosomal and symbiotic genes may have been diverse. Finally, the great diversity observed in this study emphasizes that tropics are an important reservoir of N2-fixation genes.  相似文献   

12.
AIMS: In order to evaluate differences between chickpea rhizobial populations from three geographical areas in southern Portugal (Beja, Elvas and Evora), isolates from the three regions were obtained and analysed. METHODS AND RESULTS: The genetic characterization of the isolates was done by plasmid profiles and restriction analysis of the nifH gene. Symbiotic efficiency of the isolates was also determined. Relationships between geographical origin, symbiotic efficiency and molecular characteristics were established. Beja soil revealed a larger rhizobia population as well as the presence of some of the isolates with higher symbiotic efficiency values. Isolates with a single plasmid showed a significantly higher symbiotic efficiency. CONCLUSION: Genetic and phenotypic differences were detected between the natural rhizobial populations from the three locations. SIGNIFICANCE AND IMPACT OF THE STUDY: The different yield potential with cultivars of chickpea usually obtained in the three regions of southern Portugal could be due to their different natural rhizobial populations.  相似文献   

13.
The genetic diversity of 88 Caragana nodule rhizobial isolates, collected from arid and semi-arid alkaline sandy soils in the north of China, was assessed by PCR-RFLP of the 16S rRNA gene and the 16S-23S IGS, as well as the phylogenies of housekeeping genes (atpD, glnII and recA) and symbiotic genes (nodC and nifH). Of the 88 strains, 69 were placed in the genus Mesorhizobium, 16 in Rhizobium and 3 in Bradyrhizobium. Mesorhizobium amorphae, Mesorhizobium septentrionale, Mesorhizobium temperatum and Rhizobium yanglingense were the four predominant microsymbionts associated with Caragana spp. in the surveyed regions, and M. septentrionale was widely distributed among the sampling sites. Phylogenies of nodC and nifH genes showed that two kinds of symbiotic genes existed, corresponding to Mesorhizobium and Rhizobium, respectively. Available phosphorous (P) and potassium (K) contents were the main soil factors correlated with the distribution of these rhizobia in the sampling regions. Positive correlations between the available higher P content/lower K content and the dominance of Mesorhizobium species (M. temperatum, M. amorphae and M. septentrionale), and between the lower P content/higher K content and the dominance of R. yanglingense were found.  相似文献   

14.
AIMS: To characterize the physiological and metabolic responses of Mesorhizobium ciceri strain ch-191 to salt stress, investigating the changes induced by salinity in protein and lipopolysaccharide profiles, as well as determining the accumulation of amino acids, glutamate and proline. METHODS AND RESULTS: Strain ch-191 of M. ciceri was grown with different NaCl concentrations. Protein and lipopolysaccharide patterns were determined by electrophoresis. The strain ch-191 tolerated up to 200 mmol l-1 NaCl, although higher salt dosages limited its growth and induced changes in the protein profile. The most noteworthy change in the LPS-I pattern was the decrease in the slowest band and the appearance of an intermediate mobility band. The accumulation of proline in response to salt stress surpassed that of glutamate. CONCLUSION: The protein profile showed major alterations at salinity levels which inhibited growth. However, the alterations in the LPS profile and accumulation of compatible solutes were evident from the lowest levels, suggesting that these changes may constitute adaptative responses to salt, allowing normal growth. SIGNIFICANCE AND IMPACT OF THE STUDY: The selection and characterization of salt-tolerant strains, which also show efficient symbiotic performance under salinity, may constitute a strategy for improving Cicer arietinum-Mesorhizobium ciceri symbiosis in adverse environments.  相似文献   

15.
The symbiosis between rhizobia and legumes is affected by different environmental conditions. Our aims were to evaluate stress tolerance of Mesorhizobium species and investigate species-specific stress response mechanisms. Tolerance of Mesorhizobium type strains to temperature, salt and pH stress was evaluated. Mesorhizobium thiogangeticum showed highest growth with 1.5% NaCl and Mesorhizobium ciceri at pH 5. Mesorhizobium plurifarium showed higher growth at 37°C. SDS-PAGE analysis revealed changes in the protein profiles, namely the overexpression of a 60 kDa protein, following heat stress. Under salt stress, five overexpressed proteins were identified in M. plurifarium and M. thiogangeticum. Northern analysis revealed an increase in groEL expression in Mesorhizobium huakuii and Mesorhizobium septentrionale after heat shock; by contrast, a decrease was detected in Mesorhizobium albiziae and M. thiogangeticum, upon salt shock. A high diversity in tolerance to temperature, salt and pH stress was detected among Mesorhizobium species. M. thiogangeticum and M. ciceri are moderately halophilic and acidophilic, respectively. Several proteins, overproduced in different strains, may be involved in stress tolerance. groEL expression increased upon heat and decreased upon salt shock. To our knowledge, this is the first study focusing tolerance to temperature, salt and pH stress, as well as groEL expression, in Mesorhizobium type strains.  相似文献   

16.
Astragalus gombiformis is a desert symbiotic nitrogen-fixing legume of great nutritional value as fodder for camels and goats. However, there are no data published on the rhizobial bacteria that nodulate this wild legume in northern Africa. Thirty-four rhizobial bacteria were isolated from root nodules of A. gombifomis grown in sandy soils of the South-Eastern of Morocco. Twenty-five isolates were able to renodulate their original host and possessed a nodC gene copy. The phenotypic and genotypic characterizations carried out illustrated the diversity of the isolates. Phenotypic analysis showed that isolates used a great number of carbohydrates as sole carbon source. However, although they were isolated from arid sandy soils, the isolates do not tolerate drought stress applied in vitro. The phenotypic diversity corresponded mainly to the diversity in the use of some carbohydrates. The genetic analysis as assessed by repetitive extragenic palindromic (REP)-polymerase chain reaction (PCR) showed that the isolates clustered into 3 groups at a similarity coefficient of 81 %. The nearly-complete 16S rRNA gene sequence from a representative strain of each PCR-group showed they were closely related to members of the genus Mesorhizobium of the family Phyllobactericeae within the Alphaproteobacteria. Sequencing of the housekeeping genes atpD, glnII and recA, and their concatenated phylogenetic analysis, showed they are closely related to Mesorhizobium camelthorni. Sequencing of the symbiotic nodC gene from each strain revealed they had 83.53 % identity with the nodC sequence of the type strain M. camelthorni CCNWXJ 40-4T.  相似文献   

17.
Cicer canariense is a threatened perennial wild chickpea endemic to the Canary Islands. In this study, rhizobia that nodulate this species in its natural habitats on La Palma (Canary Islands) were characterised. The genetic diversity and phylogeny were estimated by RAPD profiles, 16S-RFLP analysis and sequencing of the rrs, recA, glnII and nodC genes. 16S-RFLP grouped the isolates within the Mesorhizobium genus and distinguished nine different ribotypes. Four branches included minority ribotypes (3–5 isolates), whereas another five contained the predominant ribotypes that clustered with reference strains of M. tianshanense/M. gobiense/M. metallidurans, M. caraganae, M. opportunistum, M. ciceri and M. tamadayense. The sequences confirmed the RFLP groupings but resolved additional internal divergence within the M. caraganae group and outlined several potential novel species. The RAPD profiles showed a high diversity at the infraspecific level, except in the M. ciceri group. The nodC phylogeny resolved three symbiotic lineages. A small group of isolates had sequences identical to those of symbiovar ciceri and were only detected in M. ciceri isolates. Another group of sequences represented a novel symbiotic lineage that was associated with two particular chromosomal backgrounds. However, nodC sequences closely related to symbiovar loti predominated in most isolates, and they were detected in several chromosomal backgrounds corresponding to up to nine Mesorhizobium lineages. The results indicated that C. canariense is a promiscuous legume that can be nodulated by several rhizobial species and symbiotypes, which means it will be important to determine the combination of core and symbiotic genes that produce the most effective symbiosis.  相似文献   

18.
Sixty-eight new rhizobial isolates were obtained from root-nodules of Medicago laciniata and from Mediterranean soils in Tunisia and France. All of them were identified as Sinorhizobium meliloti on the basis of PCR-RFLP analyses of 16S rDNA and the intergenic spacer sequence between 16S and 23S rDNAs. DNA/DNA hybridization, phenotypic characterization and 16S rRNA gene sequencing led to the conclusion that they belong the same taxon. All new isolates shared the ability to nodulate and fix nitrogen with M. laciniata except 11 of them not capable of fixing nitrogen with this plant and originating from French soils containing no efficiently adapted symbionts with M. laciniata. The nitrogen-fixing rhizobia on M. laciniata differed markedly from the other S. meliloti or Sinorhizobium medicae isolates and references in their symbiotic traits such as nifDK RFLP diversity, nodA sequences and nitrogen effectiveness with tree other different annual Medicago species (M. truncatula, M. polymorpha and M. sauvagei). Two infrasubspecific (biovar) divisions are therefore proposed within S. meliloti: bv. medicaginis for Sinorhizobium efficient on M. laciniata and bv. meliloti for the classically known S. meliloti group represented by the strains ATCC9930(T) and RCR 2011 efficient on M. sativa.  相似文献   

19.
Lipopolysaccharides of two Mesorhizobium species of different host specificity were compared: M. huakuii and M. ciceri. M. huakuii sp. was represented by five strains with special consideration of M. huakuii IFO 15243(T). SDS/PAGE profiles revealed that all M. huakuii LPS preparations contained low molecular mass fractions (LPS-II) of the same molecular size. All of lipopolysaccharides contained high molecular mass fractions (LPS-I). However, the high molecular mass fraction from each strain possessed an individual molecular size distribution pattern. The crossreactivity of blotted lipopolysaccharides with rabbit polyclonal antibodies against Mesorhizobium huakuii IFO 15243(T) whole bacteria indicated the presence of common epitope(s) within the investigated Mesorhizobium huakuii strains. Moreover, LPS from M. huakuii S52 also reacted with anti M. ciceri HAMBI 1750 serum showing that there are epitopes common for different mesorhizobial species. LPS isolated from Mesorhizobium huakuii strain IFO 15243(T) contained neutral sugars: L-6-deoxytalose, L-rhamnose, D-galactose and D-glucose, aminosugars:D-quinovosamine, D-glucosamine, D-2,3-diamino-2,3-dideoxyglucose and D-galacturonic and D-glucuronic acids. In the LPS preparation, fatty acids typical for Mesorhizobium strains were detected. 3-Hydroxydodecanoic, 3-hydroxy-iso-tridecanoic, 3-hydroxyeicosanoic, 3-hydroxyheneicosanoic and 3-hydroxydocosenoic acids were the major amide linked fatty acids, while iso -heptadecanoic, eicosanoic, docosenoic, as well as 27-hydroxyoctacosanoic and 27-oxooctacosanoic acids were the dominant ester linked fatty residues.  相似文献   

20.
Several Mesorhizobium species are able to induce effective nodules in chickpea, one of the most important legumes worldwide. Our aims were to examine the biogeography of chickpea rhizobia, to search for a predominant species, and to identify the most efficient microsymbiont, considering Portugal as a case study. One hundred and ten isolates were obtained from continental Portugal and Madeira Island. The 16S ribosomal RNA gene phylogeny revealed that isolates are highly diverse, grouping with most Mesorhizobium type strains, in four main clusters (A–D). Interestingly, only 33% of the isolates grouped with Mesorhizobium ciceri (cluster B) or Mesorhizobium mediterraneum (cluster D), the formerly described specific chickpea microsymbionts. Most isolates belong to cluster A, showing higher sequence similarity with Mesorhizobium huakuii and Mesorhizobium amorphae. The association found between the province of origin and species cluster of the isolates suggests biogeography patterns: most isolates from the north, center, and south belong to clusters B, A, and D, respectively. Most of the highly efficient isolates (symbiotic effectiveness >75%) belong to cluster B. A correlation was found between species cluster and origin soil pH of the isolates, suggesting that pH is a key environmental factor, which influences the species geographic distribution. To our knowledge, this is one of the few surveys on chickpea rhizobia and the first systematic assessment of indigenous rhizobia in Portugal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号