首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
抗菌肽(antimicrobial peptides, AMPs)是生物先天免疫系统的重要组成部分,可帮助宿主有效应对病原细菌、真菌和病毒等微生物的胁迫,被认为是医疗、食品加工和农业领域最具前途和潜力的抗生素替代物。病原微生物在与抗菌肽的互作中进化出了多种有针对性的抗性机制,本文从病原微生物对AMPs的感应与基因调控、细胞壁/膜成份的修饰、分泌蛋白酶降解及利用外排泵排出等四个方面综述了国内外的研究进展,并对AMPs类制品的研究前景进行了讨论与展望。  相似文献   

2.
溶菌酶的研究进展   总被引:25,自引:1,他引:24  
对溶菌酶的稳定性的改善、制备、基因工程表达产物的复性处理作了介绍,并且对溶菌酶在医药、食品工业和生物工程上的应用作了概述。  相似文献   

3.
长期滥用抗生素导致了耐药菌株“超级细菌”的出现,增加了动物、人类健康和环境污染风险.寻找抗生素替代品正成为全球研究热点,抗菌肽因其高效抗菌效果和不同于抗生素的独特作用机制引起了各国研究者的关注,并进行了相关研究.然而抗菌肽的安全性、稳定性、生产成本等问题限制了其生产与应用.为了克服这些不利因素,研究者们对抗菌肽进行了多种方式的改造,产生了模拟型、同源型、杂合型、轭合型、稳定型和固位型等改良型抗菌肽,并有望在畜牧业、食品业、医药业等领域得到广泛的应用.本文主要综述了这些改良型抗菌肽近年来的研究进展.  相似文献   

4.
噬菌体在食品安全中的应用和潜在风险   总被引:1,自引:0,他引:1  
近年来,经食品传播的感染性疾病时有发生,有的国家甚至有增多趋势。噬菌体在早期被用来治疗细菌性疾病,现在人们已经意识到噬菌体在食品工业上的应用前景也非常广阔。已经有人提出把它作为食品添加剂使用以杀灭食源性致病菌。而噬菌体本身的特性也确实说明,噬菌体是保障食品安全的理想工具。因为噬菌体不仅安全可靠,而且有严格的宿主特异性,在杀灭食源性致病菌的同时不会杀死生产中的发酵菌株。噬菌体可以用在食品生产中的各个环节以杀灭或抑制病原菌,比如原料采集、生产、储藏等环节。探讨噬菌体杀灭食源性致病菌的应用前景和潜在风险。  相似文献   

5.
Antimicrobial peptides (AMPs) are mostly endogenous, cationic, amphipathic polypeptides, produced by many natural sources. Recently, many biological functions beyond antimicrobial activity have been attributed to AMPs, and some of these have attracted the attention of the cosmetics industry. AMPs have revealed antioxidant, self-renewal and pro-collagen effects, which are desirable in anti-aging cosmetics. Additionally, AMPs may also be customized to act on specific cellular targets. Here, we review the recent literature that highlights the many possibilities presented by AMPs, focusing on the relevance and impact that this potentially novel class of active cosmetic ingredients might have in the near future, creating new market outlooks for the cosmetic industry with these molecules as a viable alternative to conventional cosmetics.  相似文献   

6.
抗菌肽临床应用前景分析   总被引:2,自引:0,他引:2  
抗菌肽是生物天然免疫的重要组成部分,几乎存在于所有种类的生物中。目前已发现的抗菌肽超过2 000种。抗菌肽具有广谱抗菌活性,对大多数革兰氏阳性菌、革兰氏阴性菌和真菌具有强大的抑制作用(包括多药物耐受微生物),而且这种作用具有较好的选择性。这些特点使抗菌肽具有成为抗感染药物的重大潜力;但抗菌肽的临床应用也面临着一些困难,如抗菌肽大量生产、体内稳定性、微生物耐受等。对抗菌肽临床应用面临的问题及正在进行临床研究和临床前研究的抗菌肽做一简要综述。  相似文献   

7.
In response to infection, insects produce a variety of antimicrobial peptides (AMPs) to kill the invading pathogens. To study their physicochemical properties and bioactivities for clinical and commercial use in the porcine industry, we chemically synthesized the mature peptides Bombyx mori moricin and Hyalophora cecropia cecropin B. In this paper, we described the antimicrobial activity of the two AMPs. Moricin exhibited antimicrobial activity on eight strains tested with minimal inhibitory concentration values (MICs) ranging between 8 and 128 μg/ml, while cecropin B mainly showed antimicrobial activity against the Gramnegative strains with MICs ranging from 0.5 to 16 μg/ml. Compared to the potent antimicrobial activity these two AMPs displayed against most of the bacterial pathogens tested, they exhibited limited hemolytic activity against porcine red blood cells. The activities of moricin and cecropin B against Haemophilus parasuis SH 0165 were studied in further detail. Transmission electron microscopy (TEM) of moricin and cecropin B treated H. parasuis SH 0165 indicated extensive damage to the membranes of the bacteria. Insights into the probable mechanism utilized by moricin and cecropin B to eliminate pathogens are also presented. The observations from this study are important for the future application of AMPs in the porcine industry.  相似文献   

8.
甲烷氧化菌素是具有生物活性的小分子肽,相对分子质量约为1217,对铜具有较强的亲和性。目前研究发现甲烷氧化菌素的生物活性主要包括抗氧化性、抗菌性及金属螯合性。这些特性表明甲烷氧化菌素在食品医药甚至工业等领域都有很好的应用前景。  相似文献   

9.
Antimicrobial peptides (AMPs) are compounds, which have inhibitory activity against microorganisms. In the last decades, AMPs have become powerful alternative agents that have met the need for novel anti-infectives to overcome increasing antibiotic resistance problems. Moreover, recent epidemics and pandemics are increasing the popularity of AMPs, due to the urgent necessity for effective antimicrobial agents in combating the new emergence of microbial diseases. AMPs inhibit a wide range of microorganisms through diverse and special mechanisms by targeting mainly cell membranes or specific intracellular components. In addition to extraction from natural sources, AMPs are produced in various hosts using recombinant methods. More recently, the synthetic analogues of AMPs, designed with some modifications, are predicted to overcome the limitations of stability, toxicity and activity associated with natural AMPs. AMPs have potential applications as antimicrobial agents in food, agriculture, environment, animal husbandry and pharmaceutical industries. In this review, we have provided an overview of the structure, classification and mechanism of action of AMPs, as well as discussed opportunities for their current and potential applications.  相似文献   

10.
Plant cell cultures: Chemical factories of secondary metabolites   总被引:49,自引:0,他引:49  
This review deals with the production of high-value secondary metabolites including pharmaceuticals and food additives through plant cell cultures, shoot cultures, root cultures and transgenic roots obtained through biotechnological means. Plant cell and transgenic hairy root cultures are promising potential alternative sources for the production of high-value secondary metabolites of industrial importance. Recent developments in transgenic research have opened up the possibility of the metabolic engineering of biosynthetic pathways to produce high-value secondary metabolites. The production of the pungent food additive capsaicin, the natural colour anthocyanin and the natural flavour vanillin is described in detail.  相似文献   

11.
Antimicrobial peptides (AMPs) are naturally occurring entities with potential as pharmaceutical candidates and/or food additives. They are present in many organisms including bacteria, insects, fish and mammals. While their antimicrobial activity is equipotent with many commercial antibiotics, current limitations are poor pharmacokinetics, stability and potential toxicology issues. Most elicit antimicrobial action via perturbation of bacterial membranes. Consequently, associated cytotoxicity in human cells is reflected by their capacity to lyse erythrocytes. However, more rigorous toxicological assessment of AMPs is required in order to predict potential failure at a later stage of development. We describe a high-content analysis (HCA) screening protocol recently established for determination and prediction of safety in pharmaceutical drug discovery. HCA is a powerful, multi-parameter bioanalytical tool that amalgamates the actions of fluorescence microscopy with automated cell analysis software in order to understand multiple changes in cellular health. We describe the application of HCA in assessing cytotoxicity of the cytolytic α-helical peptide, melittin, and selected structural analogs. The data shows that structural modification of melittin reduces its cytotoxic action and that HCA is suitable for rapidly identifying cytotoxicity.  相似文献   

12.
Rajanbabu V  Chen JY 《Peptides》2011,32(2):415-420
Fish are a major component of the aquatic fauna. Like other organisms, fish secrete different kinds of antimicrobial peptides (AMPs), which are positively charged short amino-acid-chain molecules involved in host defense mechanisms. Environmental hazards and the greenhouse effect have led to increased evolution of drug- and vaccine-resistant pathogenic strains, and it is necessary to find new drugs with structural uniqueness to fight them. Aquatic sources contain thousands of fish species, and each secretes AMPs with structural differences which can be used by the pharmaceutical industry in its search for novel drugs to treat drug-resistant pathogens. Not only limited to antimicrobial functions, AMPs possess other desirable characteristics which may be exploited in the near future. In this review, we list fish AMPs available from published reports, and discuss application-oriented functions of these AMPs. Notably, the possibilities of using fish AMPs as antimicrobial agents, vaccine adjuvants, inactivated vaccines, and antitumor agents are discussed in this review.  相似文献   

13.
吡咯喹啉醌研究进展   总被引:1,自引:0,他引:1  
吡咯喹啉醌(PQQ)是继烟酰胺和黄素核苷酸之后发现的氧化还原酶的第3种辅酶,具有多种生理功能,在食品、医药及农业等行业有广泛的应用前景。我们简要综述了PQQ参与醌酶电子传递、增强微生物对极端环境的适应能力、促进植物生长、刺激神经生长因子生成等生物学功能及相关作用机制,介绍了PQQ生产菌、PQQ合成基因及PQQ生物合成的调控等方面的研究进展。  相似文献   

14.
抗菌肽融合表达研究进展   总被引:1,自引:0,他引:1  
抗菌肽抗菌谱广、活性稳定,且具有与抗生素不同的抗菌机制,在抑杀病原微生物的同时不易产生耐药性,因而在食品、饲料、医药等领域具有重要的应用价值。基因工程技术是降低抗菌肽生产成本的主要方式,其中融合表达在提高抗菌肽产量方面起到了重要作用。文中综述了抗菌肽融合表达的国内外研究进展,探讨了部分融合标签用于抗菌肽表达的策略,并对今后的发展提出了自己的看法。  相似文献   

15.
昆虫抗菌肽结构、性质和基因调控   总被引:7,自引:1,他引:6  
昆虫抗菌肽是昆虫先天免疫系统中非常重要的一类效应分子。昆虫抗菌肽带正电荷,分子量小,大多数少于100个氨基酸残基。根据结构可以将昆虫抗菌肽分为一些不同的家族。昆虫抗菌肽不同的抗菌谱表明,它具有不同的作用机制。以果蝇为模式生物研究表明,昆虫抗菌肽的基因调控涉及到多个信号通路及大量的信号分子。  相似文献   

16.
Because many natural resources are limited, sustainability becomes an important concept in maintaining the human population, health, and environment. Mushrooms are a group of saprotrophic fungi. Mushroom cultivation is a direct utilization of their ecological role in the bioconversion of solid wastes generated from industry and agriculture into edible biomass, which could also be regarded as a functional food or as a source of drugs and pharmaceuticals. To make the mushroom cultivation an environmentally friendly industry, the basic biology of mushrooms and the cultivation technology must be researched and developed. This is very true for Lentinula edodes, Volvariella volvacea, and Ganoderma lucidum, which are commonly consumed in Asian communities but are now gaining popularity worldwide. Besides the conventional method, strain improvement can also be exploited by protoplast fusion and transformation. Biodiversity is the key contribution to the genetic resource for breeding programs to fulfill different consumer demands. The conservation of these mushrooms becomes essential and is in immediate need not only because of the massive habitat loss as a result of human inhabitation and deforestation, but also because of the introduced competition by a cultivar with the wild germ plasm. Spent mushroom compost, a bulky solid waste generated from the mushroom industry, however, can be exploited as a soil fertilizer and as a prospective bioremediating agent.  相似文献   

17.
Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a ‘single-edged sword’ that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.  相似文献   

18.
Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs) mostly target the cell wall, a microbial ‘Achilles heel’, it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient ‘weapons’ of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs) do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the ‘Achilles heel’ has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.  相似文献   

19.
《Genomics》2020,112(5):3579-3587
Lactic acid bacteria (LAB) play a significant role in food industry and artisan fermented-food. Most of the applicable LABs were commonly obtained from natural fermented food or human gut. And Lactobacillus plantarum NCU116 was screened from a LAB-dominated traditional Chinese sauerkraut (TCS). In order to comprehend the interaction between NCU116 and its environments, comparative genomics were performed to identify genes involved in extracellular protein biosynthesis and secretion. Four secretory pathways were identified, including Sec and FPE pathways, holins and efflux ABC transporter system. Then 348 potential secretory proteins were identified, including 11 alpha-amylases responsible for degradation of macromolecules, and 8 mucus binding proteins which attribute to adherence to intestine epithelium. Besides, EPS clusters of NCU116 (EPS116) were identified and analyzed by comparing to other strains, which suggested a novel genotype of EPS clusters. These findings could be critical to extend the application of NCU116 in food and pharmaceuticals industries.  相似文献   

20.
Phycoerythrin is the major light-harvesting pigment-protein of the red algae Porphyridium cruentum and is widely used as fluorescent probe and analytical reagent. Additionally this protein has a potential application as natural dye in food industry. Nevertheless the knowledge of the functional properties of this alga protein is limited, hindering its application as food additive. In this article we report a biophysical characterization of B-phycoerythrin from Porphyridium cruentum (B-PE) in order to study its stability and spectral properties in a broad range of pHs. This information can help in its potential application as colorant in the food industry. Spectroscopic data obtained in this work show that B-PE has a stronger functional stability in the pH range 4.0–10.0, and Size Exclusion Chromatography suggests that the protein maintains a (αβ)6-γ oligomeric structure in that range of pHs. At pH 7.0, an apparent T m value of 77.5?±?0.5 °C was calculated. At this pH, the protein is highly stable with a loss of only 20 % of its spectral properties (absorbance and fluorescence) after 25 days at room temperature. These results indicate that B-PE is more stable in a broad range of pHs than other phycoerythrin proteins, which would facilitate its use in the food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号