首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased oxidative stress has been suggested to be involved in the pathogenesis and progression of diabetic tissue damage. The aim of this study was to investigate the effect of ethanolic extract of Eugenia jambolana seed kernel on antioxidant defense systems of plasma and pancreas in streptozotocin-induced diabetes in rats. The levels of glucose, vitamin-C, vitamin-E, ceruloplasmin, reduced glutathione and lipidperoxides were estimated in plasma of control and experimental groups of rats. The levels of lipidperoxides, reduced glutathione and activities of superoxide dismutase, catalase and glutathione peroxidase were assayed in pancreatic tissue of control and experimental groups of rats. A significant increase in the levels of plasma glucose, vitamin-E, ceruloplasmin, lipid peroxides and a concomitant decrease in the levels of vitamin-C, reduced glutathione were observed in diabetic rats. The activities of pancreatic antioxidant enzymes were altered in diabetic rats. These alterations were reverted back to near normal level after the treatment with Eugenia jambolana seed kernel and glibenclamide. Histopathological studies also revealed that the protective effect of Eugenia jambolana seed kernel on pancreatic beta-cells. The present study shows that Eugenia jambolana seed kernel decreased oxidative stress in diabetic rats, which inturn may be due to its hypoglycemic property.  相似文献   

2.
Oral administration of ethanol extract of N. sativa seeds (300 mg/kg body weight/day) to streptozotocin induced diabetic rats for 30 days significantly reduced the elevated levels of blood glucose, lipids, plasma insulin and improved altered levels of lipid peroxidation products (TBARS and hydroperoxides) and antioxidant enzymes like catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase in liver and kidney. The results confirm the antidiabetic activity of N. sativa seeds extract and suggest that because of its antioxidant effects its administration may be useful in controlling the diabetic complications in experimental diabetic rats.  相似文献   

3.
Forty days of orally feeding the aqueous E. ribes extract (100 and 200 mg/kg) to streptozotocin (40 mg/kg, iv, single dose) induced diabetic rats produced significant decrease in heart rate, systolic blood pressure, blood glucose, blood glycosylated hemoglobin, serum lactate dehydrogenase, creatine kinase and increase in blood glutathione levels as compared to pathogenic diabetic rats. Further, the extract significantly decreased the levels of pancreatic lipid peroxides and increased the levels of pancreatic superoxide dismutase, catalase and glutathione. The results suggest that aqueous E. ribes extract exhibits a significant blood glucose and blood pressure lowering potential. Further, it enhances endogenous antioxidant defense against free radicals produced under hyperglycaemic conditions, thereby, seemingly protects the pancreatic beta-cells against loss in streptozotocin induced diabetic rats.  相似文献   

4.
Diabetes is characterized by elevated blood glucose levels and disturbed homeostasis of metabolic enzymes in whole-body. This study aimed to investigate the effect of ginger administration on altered blood glucose levels, intra- and extra-mitochondrial enzymes and tissue injuries in streptozotocin (STZ)-induced diabetic rats. Wistar strain rats (n = 30) were equally divided into 5 groups: normal control (NC), ginger treated (Gt, 200 mg/kg b.w. orally/30 days), diabetic control (DC, 50 mg/kg b.w.), diabetic plus ginger treated (D + Gt) and diabetic plus glibenclamide treated (D + Gli) groups. We found highly elevated blood glucose levels in the diabetic group, and the glucose levels were significantly (P < 0.001) lowered by ginger administration. Activities of intra- and extra-mitochondrial enzymes such as glucose-6-phosphate dehydrogenase (G6PD), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and glutamate dehydrogenase (GDH) were significantly (P < 0.01) decreased in the kidneys of the diabetic rats, while this was significantly reversed by 30 days of ginger treatment. We also observed consistent renal tissue damages in the diabetic rats; however, these injuries recovered in the ginger-treated diabetic rats as shown in histopathological studies. In this study, we demonstrated that an ethanolic extract of ginger could lower the blood glucose levels as well as improve activities of intra- and extra-mitochondrial enzymes in diabetic rats. Our results suggest that ginger extracts could be used as a nephro-protective supplement particularly to reverse diabetic-induced complications.  相似文献   

5.
Hyperglycemia induced oxidative stress has been proposed as a cause of many complications of diabetes including cardiac dysfunction. The present study depicts the therapeutic effect of green tea extract on oxidative stress in aorta as well as heart of streptozotocin diabetic rats. Six weeks after diabetes induction, green tea was administered orally for 4 weeks [300 mg (kg body weight)(-1) day (-1)]. In aorta and heart of diabetic rats there was a significant increase in the activity of superoxide dismutase, catalase and glutathione peroxidase with an increase in lipid peroxides. Diabetic rats showed a significant decrease in the levels of serum and cardiac glutathione. Green tea administration to diabetic rats reduced lipid peroxides and activity of antioxidant enzymes whereas increased glutathione content. The results demonstrate that the induction of antioxidant enzymes in diabetic rats is not efficient and sufficient to reduce the oxidative stress. But green tea by providing a competent antioxidative mechanism ameliorates the oxidative stress in the aorta and heart of diabetic rats. The study suggests that green tea may provide a useful therapeutic option in the reversal of oxidative stress induced cardiac dysfunction in diabetes mellitus.  相似文献   

6.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

7.
The aim of this work was to investigate the biochemical and histological effects of vanadyl sulfate on blood glucose, urea, and creatinine in serum and nonenzymatic glycosylation and glutathione levels in kidney tissue of normal and streptozotocin (65 mg/kg) diabetic rats. Vanadyl sulfate was administered by gavage at a dose of 100 mg/kg. After 60 d of treatment, serum urea, creatinine, and blood glucose levels significantly increased in the diabetic group but not so in the vanadyl sulfate, which showed significantly reduced serum urea and blood glucose levels and a nonsignificant reduction of serum creatinine levels. Nonenzymatic glycosylation was increased and the glutathione level was decreased in the kidney tissue of diabetic rats. Treatment with vanadyl sulfate reversed these effects. Degenerative changes were detected in diabetic animals by electron and light microscopy. Although there are individual differences in diabetic animals given vanadium, some reduction of degenerative changes were observed.  相似文献   

8.
We investigated the effects of herb extracts, Rhus verniciflua, Agrimonia pilosa, Sophora japonica, and Paeonia suffruticosa, on the lowering of blood glucose levels and thiobarbituric acid reactive substances (TBARS) in streptozotocin (STZ)-induced diabetic rats. After 4 weeks, oral administration of Rhus verniciflua extract (50 mg/kg) exhibited a significant decrease in blood glucose levels in diabetic rats (P<0.05). Blood TBARS concentrations, the products of glucose oxidation in blood, were also lowered by Rhus verniciflua extract supplementation. In addition, Sophora japonica and Paeonia suffruticosa extracts significantly reduced TBARS levels versus diabetic controls. Serum concentrations of liver-function marker enzymes, GOT and GPT, were also restored by Rhus verniciflua (50 mg/kg) supplementation in diabetic rats.  相似文献   

9.
Zinc exerts a wide range of important biological roles. The present study was carried out to investigate the effects of zinc threoninate chelate in blood glucose levels, lipid peroxidation, activities of antioxidant defense systems and nitrite concentration, and histology of the pancreas in diabetic rats. Wistar rats were intravenously injected with a single dose of streptozotocin to induce diabetes. Then, diabetic rats were administrated orally with zinc threoninate chelate (3, 6, and 9 mg/kg body weight) once daily for 7 weeks. Fasting blood glucose was monitored weekly. At the end of the experimental period, the diabetic rats were killed, and levels of serum insulin, malondialdehyde, and nitric oxide, activities of glutathione peroxidase, total superoxide dismutase, copper/zinc-superoxide dismutase, and nitric oxide synthase were determined; pancreas was examined histopathologically as well. Zinc threoninate chelate significantly reduced the blood glucose levels and significantly increased the serum insulin levels in diabetic rats. In addition, zinc threoninate chelate caused a significant increase in activities of antioxidant enzymes and significant decrease in nitrite concentration and malondialdehyde formation in the pancreas and serum of diabetic rats. These biochemical observations were supplemented by histopathological examination of the pancreas. These results suggested that the antidiabetic effect of zinc threoninate chelate may be related to its antioxidative stress ability in diabetic rats.  相似文献   

10.
Diabetes is known to involve oxidative stress and changes in lipid metabolism. Many secondary plant metabolites have been shown to possess antioxidant activities, improving the effects of oxidative stress on diabetes. This study evaluated the effects of extracts from Gongronema latifolium leaves on antioxidant enzymes and lipid profile in a rat model of non insulin dependent diabetes mellitus (NIDDM). The results confirmed that the untreated diabetic rats were subjected to oxidative stress as indicated by significantly abnormal activities of their scavenging enzymes (low superoxide dismutase and glutathione peroxide activities), compared to treated diabetic rats, and in the extent of lipid peroxidation (high malondialdehyde levels) present in the hepatocytes. The ethanolic extract of G. latifolium leaves possessed antioxidant activity as shown by increased superoxide dismutase and glutathione peroxidase activities and decreases in malondialdehyde levels. High levels of triglycerides and total cholesterol, which are typical of the diabetic condition, were also found in our rat models of diabetes. The ethanolic extract also significantly decreased triglyceride levels and normalized total cholesterol concentration.  相似文献   

11.
Pari L  Satheesh MA 《Life sciences》2006,79(7):641-645
The purpose of this study was to investigate the effect of pterostilbene and its effect on key enzymes of glucose metabolism. Diabetic rats were orally administered with pterostilbene (10, 20, 40 mg/kg) for 2, 4 and 6 weeks on glucose was determined. Administration of pterostilbene at 40 mg/kg significantly decreases plasma glucose. Based on these data, the higher dose, 40 mg/kg pterostilbene, was selected for further evaluation. Oral administration of pterostilbene for 6 weeks on glucose, insulin levels and hepatic enzymes in normal and streptozotocin (STZ)-nicotinamide-induced diabetic rats. A significant decrease in glucose and significant increase in plasma insulin levels were observed in normal and diabetic rats treated with pterostilbene. Treatment with pterostilbene resulted in a significant reduction of glycosylated hemoglobin and an increase in total hemoglobin level. The activities of the hepatic enzymes such as hexokinase was significantly increased whereas glucose-6-phosphatase, fructose-1,6-bisphosphatase were significantly decreased by the administration of pterostilbene in diabetic rats. A comparison was made between the action of pterostilbene and the antidiabetic drug--metformin.  相似文献   

12.
Diabetic nephropathy is a major "microvascular" complication of diabetes, differs from other causes of chronic kidney diseases in its predictability, with well-defined functional progression from hyperfiltration to micro- to macroalbuminuria to renal failure. The present study was undertaken to investigate the effect of Asparagus racemosus Willd (Liliaceae) on streptozotocin-induced early diabetic nephropathy. Single i.p injection of streptozotocin (55 mg/kg) was administered to induce early diabetic nephropathy in Wistar rats and thereafter treated orally with ethanolic extract of Asparagus racemosus (EEAR) at a dose level of 100 and 250 mg/kg daily for 4 weeks. The efficacy of extract was compared with diabetic control rats. A. racemosus treatment significantly decreased plasma glucose, creatinine, urea nitrogen, total cholesterol and triglyceride levels. Renal hypertrophy, polyuria, hyperfiltration, microalbuminuria and abnormal changes in the renal tissue as well as oxidative stress were effectively attenuated by EEAR treatment. Basement membrane thickening and mesangial proliferation formation without nodules were seen in diabetic rats, whereas these structural changes were reduced in EEAR treated groups. Results of this study suggested that A. racemosus has beneficial effect in the treatment of diabetic  相似文献   

13.
Quercitrin, a bio flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were induced diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in pancreas, liver, and kidney. Histopathological studies were carried out in these tissues. A significant (P < 0.05) increase in the levels of fasting plasma glucose and lipid peroxidative products (thiobarbituric acid reactive substances and lipid hydroperoxides) and a significant (P < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and E) in diabetic pancreas, liver, and kidney were observed. Oral administration of quercitrin (30 mg/kg) for a period of 30 days significantly (P < 0.05) decreased fasting plasma glucose, increased insulin levels, and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with quercitrin (30 mg/kg) showed no significant (P < 0.05) effect on any of the parameters studied. Histopathological studies of the pancreas, liver, and kidney showed the protective role of quercitrin. Thus, our study clearly shows that quercitrin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

14.
Free radicals and oxidative stress have been implicated in the etiology of diabetes and its complications. This in vivo study has examined whether subacute administration of pycnogenol, a French pine bark extract containing procyanidins that have strong antioxidant potential, alters biomarkers of oxidative stress in normal and diabetic rats. Diabetes was induced in female Sprague-Dawley rats by a single injection of streptozotocin (90 mg/kg body weight, ip), resulting (after 30 days) in subnormal body weight, increased serum glucose concentrations, and an increase in liver weight, liver/body weight ratios, total and glycated hemoglobin, and serum aspartate aminotransferase activity. Normal and diabetic rats were treated with pycnogenol (10 mg/kg body weight/day, ip) for 14 days. Pycnogenol treatment significantly reduced blood glucose concentrations in diabetic rats. Biochemical markers for oxidative stress were assessed in the liver, kidney, and heart. Elevated hepatic catalase activity in diabetic rats was restored to normal levels after pycnogenol treatment. Additionally, diabetic rats treated with pycnogenol had significantly elevated levels of reduced glutathione and glutathione redox enzyme activities. The results demonstrate that pycnogenol alters intracellular antioxidant defense mechanisms in streptozotocin-induced diabetic rats.  相似文献   

15.
Succinic acid monoethyl ester (EMS) was recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study the effect of EMS and metformin on erythrocyte membrane bound enzymes and antioxidants activity in plasma and erythrocytes of streptozotocin-nicotinamide induced type 2 diabeteic model was investigated. Succinic acid monoethyl ester was administered intraperitonially for 30 days to control and diabetic rats. The effect of EMS on glucose, insulin, hemoglobin, glycosylated hemoglobin, TBARS, hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (Gpx), glutathione-S-transferase (GST), vitamins C and E, reduced glutathione (GSH) and membrane bound enzymes were studied. The effect of EMS was compared with metformin, a reference drug. The levels of glucose, glycosylated hemoglobin, TBARS, hyderoperoxide, and vitamin E were increased significantly whereas the level of insulin and hemoglobin, as well as antioxidants (SOD, CAT, Gpx, GST, vitamin C and GSH) membrane bound total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were decreased significantly in streptozotocin-nicotinamide diabetic rats. Administration of EMS to diabetic rats showed a decrease in the levels of glucose, glycosylated hemoglobin, lipid peroxidation markers and vitamin E. In addition the levels of insulin, hemoglobin, enzymic antioxidants, vitamin C, and GSH and the activities of membrane bound enzymes also were increased in EMS and metformin treated diabetic rats. The present study indicates that the EMS possesses a significant beneficial effect on erythrocyte membrane bound enzymes and antioxidants defense system in addition to its antidiabetic effect.  相似文献   

16.
Ugochukwu NH  Babady NE 《Life sciences》2003,73(15):1925-1938
The present study was designed to investigate the antihyperglycemic effects of aqueous and ethanolic extracts from Gongronema latifolium leaves on glucose and glycogen metabolism in livers of non-diabetic and streptozotocin-induced diabetic rats. To investigate the effects of aqueous or ethanolic leaf extracts of G. latifolium, non-diabetic and STZ diabetic rats were treated twice daily (100 mg/Kg) for two weeks. Diabetic rats showed a significant decrease in the activities of hepatic hexokinase (HK), phosphofructokinase (PFK) and glucose-6-phosphate dehydrogenase (G6PDH) and an increase in glucokinase (GK) activity. The levels of hepatic glycogen and glucose were also increased in diabetic rats. However, there were no significant differences in the activities of glucose-6-phosphatase (G6Pase) in treated and untreated diabetic rats. The ethanolic extract significantly increased the activities of HK (p<0.01), PFK (p<0.001) and G6PDH (p<0.01) in diabetic rats, decreased the activity of GK (p<0.05) and the levels of hepatic glycogen (p<0.01) and both hepatic (p<0.001) and blood glucose (40%). The aqueous extract of G. latifolium was only able to significantly increase the activities of HK and decrease the activities of GK but did not produce any significant change in the hepatic glycogen and both hepatic and blood glucose content of diabetic rats. Our data show that the ethanolic extract from G. latifolium leaves has antihyperglycemic potency, which is thought to be mediated through the activation of HK, PFK, G6PDH and inhibition of GK in the liver. The ethanolic extract is under further investigation to determine the chemical structure of the active compound(s) and its/their mechanism of action.  相似文献   

17.
Diabetes induced by streptozotocin (50 mg/kg body wt, i.p.) in the rats substantially increased the plasma glucose and malondialdehyde levels along with corresponding decrease in the antioxidants levels. Supplementation of vitamin E (200 mg/kg body wt., ip) for 5 weeks resulted in non-significant decrease in the blood glucose levels but plasma malondialdehyde levels were reduced to below normal levels. Plasma vitamin E, vitamin C, uric acid and red blood cell glutathione levels were also restored to near normal levels on vitamin E supplementation to diabetic rats as compared to control (diabetic) rats. The activities of antioxidant enzymes, catalase (EC 1.11.1.6), glutathione peroxidase (GSHPx EC 1.11.1.9), and glutathione reductase (GR EC 1.6.4.2) were also concomitantly restored to near normal levels by vitamin E supplementation to diabetic rats. The results clearly demonstrated that vitamin E supplementation augments the antioxidant defense mechanism in diabetes and provides evidence that vitamin E may have a therapeutic role in free radical mediated diseases.  相似文献   

18.
Ichnocarpus frutescence (L.) R.Br. is an evergreen plant and many preparations have been used in traditional Indian medicine for centuries to treat several illnesses including diabetes. However, scientific evidence supporting these actions is lacking. In the present study we prepared various extracts of I. frutescence (IF) leaves which were tested against streptozotocin-induced diabetic rats. IF leaf methanolic extract (IFLMExt) showed significant plasma glucose lowering effect. Therefore, we prepared IFLMExt, which was tested against different types of glycemia (normal, glucose-fed hyperglycemic and streptozotocin-induced diabetic rats) for their potential to induce insulin secretion and cellular insulin responses. Fasting plasma glucose (FPG) levels were determined at different doses and times following treatment with IFLMExt or with vehicle in normal, glucose fed-hyperglycemic and diabetic rats. Oral administration of IFLMExt led to a significant blood glucose-lowering effect in glucose-fed hyperglycemic and diabetic rats. The hypoglycemic effect was observed at doses of 100 and 200 mg/(kg bw) after 6 and 2 h administration, respectively, in glucose-fed hyperglycemic rats. The maximum effect of IFLMExt was detected at 2 h with 200 mg/(kg bw) in diabetic animals and this profile was maintained for the next 6 h (37.23%) but increased after that at 24 h. Oral administration of IFLMExt daily for 45 days to diabetic rats significantly reduced the FPG (54.5%) to near normal. After 7 days of streptozotocin administration plasma insulin decreased in diabetic controls compared to normal controls. Treatment with IFLMExt significantly prevented the decrease in plasma insulin levels from day 0 to 45 in comparison to diabetic controls. Oral administration of n-hexane fraction led to a significant glucose-lowering effect in diabetic rats (54.50%). Histopathological examination showed that IFLMExt extract protected the pancreatic tissue from streptozotocin-induced damage enormously. Oral administration of IFLMExt extract and n-hexane fraction to normal and streptozotocin-induced diabetic rats decreased plasma glucose levels without hypoglycemic effect. The results suggest that methanolic extract and n-hexane fraction of IF may provide new therapeutic avenues against diabetes.  相似文献   

19.
We investigated the prolactin-releasing peptide (PrRP) mRNA levels in the hypothalamus and brainstem of streptozotocin (STZ)-induced diabetic rats and fa/fa Zucker diabetic rats, using in situ hybridization histochemistry. PrRP mRNA levels in the hypothalamus and brainstem of STZ-induced diabetic rats were significantly reduced in comparison with those of control rats. PrRP mRNA levels in the diabetic rats were reversed by both insulin and leptin. PrRP mRNA levels in the fa/fa diabetic rats were significantly reduced in comparison with those of Fa/? rats. PrRP mRNA levels in the fa/fa diabetic rats were significantly increased by insulin-treatment, but did not reach control levels in the Fa/? rats. We also investigated the effect of restraint stress on PrRP mRNA levels in STZ-induced diabetic rats. The PrRP mRNA levels in the control and the STZ-induced diabetic rats increased significantly after restraint stress. The diabetic condition and insulin-treatment may affect the regulation of PrRP gene expression via leptin and other factors, such as plasma glucose level. The diabetic condition may not impair the role of PrRP as a stress mediator.  相似文献   

20.
Although coenzyme Q10 (CoQ10) is a component of the oxidative phosphorylation process in mitochondria that converts the energy in carbohydrates and fatty acids into ATP to drive cellular machinery and synthesis, its effect in type I diabetes is not clear. We have studied the effect of 4 wk of treatment with CoQ10 (10 mg/kg, ip, daily) in streptozotocin (STZ)-induced (40 mg/kg, iv in adult rats) type I diabetes rat models. Treatment with CoQ10 produced a significant decrease in elevated levels of glucose, cholesterol, triglycerides, very-low-density lipoprotein, lowdensity lipoprotein, and atherogenic index and increased high-density lipoprotein cholesterol levels in diabetic rats. CoQ10 treatment significantly decreased the area under the curve over 120 min for glucose in diabetic rats, without affecting serum insulin levels and the area under the curve over 120 min for insulin in diabetic rats. CoQ10 treatment also reduced lipid peroxidation and increased antioxidant parameters like superoxide dismutase, catalase, and glutathione in the liver homogenates of diabetic rats. CoQ10 also lowered the elevated blood pressure in diabetic rats. In conclusion, CoQ10 treatment significantly improved deranged carbohydrate and lipid metabolism of experimental chemically induced diabetes in rats. The mechanism of its beneficial effect appears to be its antioxidant property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号